Share:
Share this content in WeChat
X
Review
Advances in clinical research of radiomics in bone tumors
LIU Ke  ZHANG Enlong  WANG Qizheng  CHEN Yongye  ZHANG Jiahui  LANG Ning 

Cite this article as: Liu K, Zhang EL, Wang QZ, et al. Advances in clinical research of radiomics in bone tumors. Chin J Magn Reson Imaging, 2020, 11(10): 957-960. DOI:10.12015/issn.1674-8034.2020.10.032.


[Abstract] With the development of artificial intelligence technology and the concept of precision medicine, the traditional imaging diagnosis model is gradually difficult to meet the needs of personalized medical activities. Radiomics, which uses high-throughput quantitative feature extraction methods to convert images into minable data and analyzes the data using machine learning algorithms to provide clinical decision support, has received widespread attention. Many existing studies have tried to apply radiomics to the clinical diagnosis and treatment of bone tumors. This article will focus on a brief overview of radiomics techniques from an application perspective, detailing the progress of radiomics studies in diagnosis and differential diagnosis, typing and stage, prognosis prediction and genetic analysis of bone tumor, and presenting the current challenges and future development direction.
[Keywords] bone tumor;radiomics;feature extraction;machine learning

LIU Ke Department of Radiology, Peking University Third Hospital, Beijing 100191, China

ZHANG Enlong Department of Radiology, Peking University International Hospital, Beijing 102206, China

WANG Qizheng Department of Radiology, Peking University Third Hospital, Beijing 100191, China

CHEN Yongye Department of Radiology, Peking University Third Hospital, Beijing 100191, China

ZHANG Jiahui Department of Radiology, Peking University Third Hospital, Beijing 100191, China

LANG Ning* Department of Radiology, Peking University Third Hospital, Beijing 100191, China

*Correspondence to: Lang N, E-mail: 13501241339@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Natural Science Foundation of China No. 81971578, 81701648 Beijing Natural Science Foundation No. Z190020
Received  2020-04-22
Accepted  2020-05-30
DOI: 10.12015/issn.1674-8034.2020.10.032
Cite this article as: Liu K, Zhang EL, Wang QZ, et al. Advances in clinical research of radiomics in bone tumors. Chin J Magn Reson Imaging, 2020, 11(10): 957-960. DOI:10.12015/issn.1674-8034.2020.10.032.

[1]
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[2]
Lambin P, Rios-velazquez E, Leijenaar RTH, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[3]
刘再毅,梁长虹.影像组学研究浅见.影像诊断与介入放射学, 2017, 26(3): 253-254. DOI: 10.3969/j.issn.1005-8001.2017.00.019.
[4]
Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 2014, 5(1): 4006. DOI: 10.1038/ncomms5006.
[5]
Baessler B, Weiss K, Pinto DSD. Robustness and reproducibility of radiomics in magnetic resonance imaging: a phantom study. Investigative Radiology, 2019, 54(4): 221-228. DOI: 10.1097/RLI.0000000000000530.
[6]
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging, 2012, 30(9): 1234-1248. DOI: 10.1016/j.mri.2012.06.010.
[7]
Shboul ZA, Alam M, Vidyaratne L, et al. Feature-guided deep radiomics for glioblastoma patient survival prediction. Frontiers in Neuroscience, 2019, 13: 966. DOI: 10.3389/fnins.2019.00966.
[8]
王敏,宋彬,黄子星,等.大数据时代的精准影像医学:放射组学.中国普外基础与临床杂志, 2016, 23(6): 752-755. DOI: 10.7507/1007-9424.20160198.
[9]
Bizzego A, Bussola N, Salvlai D, et al. Integrating deep and radiomics features in cancer bioimaging. Bioinformatics, 2019[2020-04-01]. http://biorxiv.org/lookup/doi/10.1101/568170. DOI: 10.1101/568170.
[10]
Larue RTHM, Defraene G, De RD, et al. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. British J Radiol, 2017, 90(1070): 20160665. DOI: 10.1259/bjr.20160665.
[11]
金哲,张璐,张斌,等.头颈部肿瘤影像组学研究进展.中华放射学杂志, 2020, 54(2): 167-171. DOI: 10.3760/cma.j.issn.1005-1201.2020.02.020.
[12]
周志华.机器学习.北京:清华大学出版社, 2018: 94.
[13]
Filograna L, Lenkowicz J, Cellini F, et al. Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: a feasibility study. La Radiologia Medica, 2019, 124(1): 50-57. DOI: 10.1007/s11547-018-0935-y.
[14]
Larhmam MA, Mahmoudi S, Drisis S, et al. A texture analysis approach for spine metastasis classification in T1 and T2 MRI. Rojas I, Ortuño F.//Bioinformatics and Biomedical Engineering. Cham: Springer International Publishing, 2018: 198-211[2020-02-18]. http://link.springer.com/10.1007/978-3-319-78759-6_19. DOI: 10.1007/978-3-319-78759-6_19.
[15]
Li L. Radiomic analysis of multiparametric magnetic resonance imaging for differentiating skull base chordoma and chondrosarcoma. Eur J Radiol, 2019, 118: 81-87. DOI: 10.1016/j.ejrad.2019.07.006.
[16]
Dai Y, Yin P, Mao N, et al. Differentiation of pelvic osteosarcoma and ewing sarcoma using radiomic analysis based on T2-weighted images and contrast-enhanced T1-weighted images. Bio Med Res Inter, 2020, 2020: 1-8. DOI: 10.1155/2020/9078603.
[17]
Yin P, Mao N, Zhao C, et al. A triple-classification radiomics model for the differentiation of primary chordoma, giant cell tumor, and metastatic tumor of sacrum based on T2-weighted and contrast-enhanced T1-weighted MRI. J Magn Reson Imaging, 2019, 49(3): 752-759. DOI: 10.1002/jmri.26238.
[18]
Yin P, Mao N, Zhao C, et al. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features. Eur Radiol, 2019, 29(4): 1841-1847. DOI: 10.1007/s00330-018-5730-6.
[19]
Fritz B, Müller DA, Sutter R, et al. Magnetic resonance imaging-based grading of cartilaginous bone tumors: added value of quantitative texture analysis. Investigative Radiology, 2018, 53(11): 663-672. DOI: 10.1097/RLI.0000000000000486.
[20]
Gitto S, Cuocol R, Albano D, et al. MRI radiomics-based machine-learning classification of bone chondrosarcoma. Eur J Radiol, 2020, 128: 109043. DOI: 10.1016/j.ejrad.2020.109043.
[21]
Lang N, Zhang Y, Zhang E, et al. Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI. Magn Reson Imaging, 2019, 64: 4-12. DOI: 10.1016/j.mri.2019.02.013.
[22]
Tagliafico AS, Cea M, Rossi F, et al. Differentiating diffuse from focal pattern on computed tomography in multiple myeloma: added value of a radiomics approach. Eur J Radiol, 2019, 121: 108739. DOI: 10.1016/j.ejrad.2019.108739.
[23]
Zhao S, Su Y, Duan J, et al. Radiomics signature extracted from diffusion-weighted magnetic resonance imaging predicts outcomes in osteosarcoma. J Bone Oncology, 2019, 19: 100263. DOI: 10.1016/j.jbo.2019.100263.
[24]
Wei W, Wang K, Liu Z, et al. Radiomic signature: a novel magnetic resonance imaging-based prognostic biomarker in patients with skull base chordoma. Radiotherapy and Oncology, 2019, 141: 239-246. DOI: 10.1016/j.radonc.2019.10.002.
[25]
Lin P, Yang PF, Chen S, et al. A delta-radiomics model for preoperative evaluation of neoadjuvant chemotherapy response in high-grade osteosarcoma. Cancer Imaging, 2020, 20(1): 7. DOI: 10.1186/s40644-019-0283-8.
[26]
Yin P, Mao N, Liu X, et al. Can clinical radiomics nomogram based on 3D multiparametric MRI features and clinical characteristics estimate early recurrence of pelvic chondrosarcoma?. J Magn Reson Imaging, 2020, 51(2): 11. DOI: 10.1002/jmri.26834.
[27]
Sheen H, Kim W, Byun BH, et al. Metastasis risk prediction model in osteosarcoma using metabolic imaging phenotypes: a multivariable radiomics model. PLoS One, 2019, 14(11): e0225242. DOI: 10.1371/journal.pone.0225242.
[28]
Wang Y, Yu B, Zhong F, et al. MRI-based texture analysis of the primary tumor for pre-treatment prediction of bone metastases in prostate cancer. Magn Reson Imaging, 2019, 60(6): 76-84. DOI: 10.1016/j.mri.2019.03.007.
[29]
Zhang W, Mao N, Wang Y, et al. A radiomics nomogram for predicting bone metastasis in newly diagnosed prostate cancer patients. Eur J Radiol, 2020, 128: 109020. DOI: 10.1016/j.ejrad.2020.109020.
[30]
Shen T, Liu L, Li W, et al. CT imaging-based histogram features for prediction of EGFR mutation status of bone metastases in patients with primary lung adenocarcinoma. Cancer Imaging, 2019, 19(1): 34. DOI: 10.1186/s40644-019-0221-9.
[31]
Hatt M, Vallieres M, Visvikis D, et al. IBSI: an international community radiomics standardization initiative. J Nuclear Med, 2018, 59(Suppl 1): 287. DOI: 10.2967/jnumed.118.220582.
[32]
Liu Z, Li Z, Qu J, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[33]
Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncology, 2018, 19(9): 1180-1191. DOI: 10.1016/S1470-2045(18)30413-3.
[34]
Thawani R, Mclane M, Beig N, et al. Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer, 2018, 115: 34-41. DOI: 10.1016/j.lungcan.2017.10.015.

PREV The application of 19F-MR molecular imaging in targeted drug delivery
NEXT Degree centrality of brain network in heroin addicts treated with methadone maintenance: a resting-state functional magnetic resonance imaging study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn