Share:
Share this content in WeChat
X
Review
Progress of blood oxygen level dependent magnetic resonance imaging in kidney disease
ZHENG Shuangshuang  LU Jie 

Cite this article as: Zheng SS, Lu J. Progress of blood oxygen level dependent magnetic resonance imaging in kidney disease. Chin J Magn Reson Imaging, 2020, 11(11): 1074-1076. DOI:10.12015/issn.1674-8034.2020.11.028.


[Abstract] Blood oxygen level dependent magnetic resonance imaging (BOLD MRI) is a technique for obtaining tissue oxygen content by measuring the content of deoxyhemoglobin in the blood, which could reflect the hemodynamic and pathophysiological changes of tissues and organs and provide a non-invasive and reproducible examination method for clinical diagnosis, treatment and scientific research. Because BOLD MRI has been used in clinical studies on kidney diseases such as ischemic nephropathy, chronic kidney disease, stage of diabetic nephropathy and assessment of renal function. This article reviews the progress of clinical research in the past 5 years.
[Keywords] kidney;blood oxygen level dependent;magnetic resonance imaging

ZHENG Shuangshuang Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Department of Radiology, Fuxing Hospital, Capital Medical University, Beijing 100038, China

LU Jie Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China

*Correspondence to: LU J, E-mail: imaginglu@hotmail.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  Beijing Municipal Hospital Administration's "peak climbing" Program No. DFL20180802
Received  2020-02-19
Accepted  2020-09-18
DOI: 10.12015/issn.1674-8034.2020.11.028
Cite this article as: Zheng SS, Lu J. Progress of blood oxygen level dependent magnetic resonance imaging in kidney disease. Chin J Magn Reson Imaging, 2020, 11(11): 1074-1076. DOI:10.12015/issn.1674-8034.2020.11.028.

[1]
Pruijm M, Milani B, Burnier M. Blood oxygenation level-dependent MRI to assess renal oxygenation in renal diseases: progresses and challenges. Front Physiol, 2017, 7: 667. DOI: 10.3389/fphys.2016.00667
[2]
黄海波.肾脏血氧水平依赖性成像研究进展.磁共振成像, 2017, 8(8): 636-640. DOI: 10.12015/issn.1674-8034.2017.08.015
[3]
Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990, 87(24): 9868-9872. DOI: 10.1073/pnas.87.24.9868
[4]
Prasad PV, Epstein FH. Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition. Kidney Int, 1999, 55(1): 294-298. DOI: 10.1046/j.1523-1755.1999.00237.x
[5]
Djamali A, Sadowski EA, Samaniego-Picota M, et al. Noninvasive assessment of early kidney allograft dysfunction by blood oxygen level dependent magnetic resonanc imaging. Transplantation, 2006, 82(5): 621-628. DOI: 10.1097/01.tp.0000234815.23630.4a
[6]
Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation, 1996, 94(12): 3271-3275. DOI: 10.1161/01.cir.94.12.3271
[7]
Prasad PV. Evaluation of intra-renal oxygenation by BOLD MRI. Nephron Clin Pract, 2006, 103(2): c58-c65. DOI: 10.1159/000090610
[8]
Prasad PV. Functional MRI of the kidney: tools for translational studies of pathophysiolegy of renal disease. Am J Physiol Renal Physiol, 2006, 290(5): F958-974. DOI: 10.1152/ajprenal.00114.2005
[9]
Yin W, Liu F, Li X, et al. Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI. Eur J Radiol, 2012, 81(7): 1426-1431. DOI: 10.1016/j.ejrad.2011.03.045
[10]
Wang Q, Guo C, Zhang L, et al. BOLD MRI to evaluate early development of renal injury in a rat model of diabetes. J Int Med Res, 2018, 46(4): 1391-1403. DOI: 10.1177/0300060517743826
[11]
蒋振兴,王毓,丁玖乐,等.血氧水平依赖MRI评估糖尿病肾病肾功能损伤的研究.磁共振成像, 2015, 6(7): 524-528. DOI: 10.3969/j.issn.1674-8034.2015.07.009
[12]
周江燕,何悦明,尚润润,等. BOLD-MRI评价2型糖尿病患者降血糖治疗前后肾组织氧合状况.中国医学影像技术, 2019, 35(2): 231-235. DOI: 10.13929/j.1003-3289.201807107
[13]
Epstein FH. Oxygen and renal metabolism. Kidney Int, 1997, 51(2): 381-385. DOI: 10.1042/BSR20160186
[14]
Palm F, Nordquist L. Renal tubulointerstitial hypoxia: cause and consequence of kidney dysfunction. Clin Exp Pharmacol Physiol, 2011, 38(7): 474-480. DOI: 10.1111/j.1440-1681.2011.05532.x
[15]
Haase VH. Hypoxia-inducible factor signaling in the development of kidney fibrosis. Fibrogenesis Tissue Repair, 2012, 5(s1): s16. DOI: 10.1186/1755-1536-5-S1-S16
[16]
Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int, 2008, 74(7): 867-872. DOI: 10.1038/ki.2008.350
[17]
Milani B, Ansaloni A, Sousa-Guimaraes S, et al. Reduction of cortical oxygenation in chronic kidney disease: evidence obtained with a new analysis method of blood oxygenation level-dependent magnetic resonance imaging. Nephrol Dial Transplant, 2017, 32(12): 2097-2105. DOI: 10.1093/ndt/gfw362
[18]
Li LP, Milani B, Pruijm M, et al. Renal BOLD MRI in patients with chronic kidney disease: comparison of the semi-automated twelve layer concentric objects (TLCO) and manual ROI methods. MAGMA, 2020, 33(1): 113-120. DOI: 10.1007/s10334-019-00808-5
[19]
Pruijm M, Milani B, Pivin E, et al. Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. Kidney Int, 2018, 93(4): 932-940. DOI: 10.1016/j.kint.2017.10.020
[20]
Zhou H, Yang M, Jiang Z, et al. Renal hypoxia: an important prognostic marker in patients with chronic kidney disease. Am J Nephrol, 2018, 48(1): 46-55. DOI: 10.1159/000491551
[21]
Textor SC, Glockner JF, Lerman LO, et al. The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. J Am Soc Nephrol, 2008, 19(4): 780-788. DOI: 10.1681/ASN.2007040420
[22]
Herrmann SM, Saad A, Eirin A, et al. Differences in GFR and tissue oxygenation, and interactions between stenotic and contralateral kidneys in unilateral atherosclerotic renovascular disease. Clin J Am Soc Nephrol, 2016, 11(3): 458-469. DOI: 10.2215/CJN.03620415
[23]
Manohar S, Hamadah A, Herrmann SM, et al. Total renal artery occlusion: recovery of function after revascularization. Am J Kidney Dis, 2018, 71(5): 748-753. DOI: 10.1053/j.ajkd.2017.11.014
[24]
Hall ME, Rocco MV, Morgan TM, et al. Beta-blocker use is associated with higher renal tissue oxygenation in hypertensive patients suspected of renal artery stenosis. Cardiorenal Med, 2016, 6(4): 261-268. DOI: 10.1159/000445302
[25]
Li X, Xu X, Zhang Q, et al. Diffusion weighted imaging and blood oxygen level-dependent MR imaging of kidneys in patients with lupus nephritis. J Transl Med, 2014. 12(1): 295. DOI: 10.1186/s12967-014-0295-x
[26]
Shi H, Yan T, Li D, et al. Detection of renal hypoxia in lupus nephritis using blood oxygen level-dependent MR imaging: a multiple correspondence analysis. Kidney Blood Press Res, 2017, 42 (1): 123-135. DOI: 10.1159/000472720

PREV Research progress of MRI in pelvic floor dysfunction
NEXT Progress of MRI in identifying benign and malignant vertebral compression fractures
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn