Share:
Share this content in WeChat
X
Clinical Article
Application of 3.0 T MRI 2D-CSI 1H-MRS in children with temporal lobe epilepsy without morphological changes
ZHU Kai  ZENG Lihong  ZHAO Xianglian  ZHANG Xiaofan  WANG Zhiwei  LIU Xinchun  HAO Mingzhu 

Cite this article as: Zhu K, Zeng LH, Zhao XL, et al. Application of 3.0 T MRI 2D-CSI 1H-MRS in children with temporal lobe epilepsy without morphological changes. Chin J Magn Reson Imaging, 2020, 11(12): 1097-1103. DOI:10.12015/issn.1674-8034.2020.12.004.


[Abstract] Objective: To explore the value of two-dimensional chemical shift magnetic resonance imaging of hydrogen proton spectroscopy (2D-CSI 1H-MRS) in the micro changes of hippocampus.Materials and Methods: The spectral data of temporal lobe hippocampus in 36 cases of children and 20 cases of healthy control group were retrospectively analyzed to observe the relationship between gender, age and distribution, and to analyze the metabolic information of MRS in unilateral, bilateral and control groups of observation group and unilateral and healthy side of observation group.Results: There were 36 cases with male and left temporal lobe, but there was no significant difference in gender and location distribution (χ2=1.67, P>0.05); the age of onset of bilateral males in the observation group was younger than that of females (F=12.25, P=0.015). NAA/Cr, NAA/Cho, NAA/(Cho+Cr) in the observation group were significantly lower than those in the control group (F=12.22, 35.786, 6.712; P<0.001), Cho/Cr increased in unilateral group (F=14.712, P<0.001), the differences were statistically significant (P<0.05); compared with the uninjured side, NAA decreased and Cho increased in the observation group (P=0.034, 0.016), and the differences were statistically significant (P<0.05).Conclusions: 2D-CSI 1H-MRS examination showed that there were microscopic abnormalities and changes in cellular and molecular levels in temporal lobe. Therefore, it is a promising tool for the evaluation of TLE in children.
[Keywords] magnetic resonance imaging;two-dimensional chemical shift magnetic resonance imaging of hydrogen proton spectroscopy;morphological changes;temporal lobe epilepsy;children

ZHU Kai* Harbin Children's Hospital, Harbin 150010, China

ZENG Lihong Harbin Children's Hospital, Harbin 150010, China

ZHAO Xianglian Harbin Children's Hospital, Harbin 150010, China

ZHANG Xiaofan Harbin Children's Hospital, Harbin 150010, China

WANG Zhiwei Harbin Children's Hospital, Harbin 150010, China

LIU Xinchun Harbin Children's Hospital, Harbin 150010, China

HAO Mingzhu Harbin Children's Hospital, Harbin 150010, China

*Correspondence to: Zhu K, E-mail: 2008mr-zhukai@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of Scientific Research Project of Heilongjiang Provincial Health and Family Planning Commission No. 2017-232
Received  2020-07-08
Accepted  2020-08-21
DOI: 10.12015/issn.1674-8034.2020.12.004
Cite this article as: Zhu K, Zeng LH, Zhao XL, et al. Application of 3.0 T MRI 2D-CSI 1H-MRS in children with temporal lobe epilepsy without morphological changes. Chin J Magn Reson Imaging, 2020, 11(12): 1097-1103. DOI:10.12015/issn.1674-8034.2020.12.004.

[1]
Grewal SS, Alvi MA, Perkins WJ, et al. Reassessing the impact of intraoperative electrocorticography on postoperative outcome of patients undergoing standard temporal lobectomy for MRI-negative temporal lobe epilepsy. J Neurosurg, 2019, 132(2): 605-614. DOI: 10.3171/2018.11.JNS182124.
[2]
Karunakaran S, Rollo MJ, Kim K, et al. The interictal mesial temporal lobe epilepsy network. Epilepsia, 2018, 59(1): 244-258. DOI: 10.1111/epi.13959.
[3]
许畅,汪恩焕.联合应用长程视频脑电图与磁共振波谱技术定位颞叶癫痫致痫灶的临床分析.淮海医药, 2018, 36(5): 523-526, 530. DOI: 10.14126/j.cnki.1008-7044.
[4]
杨凯华,郑彬,陈志平,等.儿童海马多体素磁共振波谱检查技术探讨.中国医学计算机成像杂志, 2018, 24(6): 543-547. DOI: 10.19627/j.cnki.cn31-1700/th.2018.06.018.
[5]
Wirrell EC, Grossardt BR, Wong-Kisiel LCL, et al. Incidence and classification of new-onset epilepsy and epilepsy syndromes in children in olmsted county, minnesota from 1980 to 2004: a population-based study. Epilepsy Res, 2011, 95(1-2): 110-118. DOI: 10.1016/j.eplepsyres.2011.03.009.
[6]
Meguid NA, Samir H, Bjørklund G, et al. Altered S100 calcium-binding protein B and matrix metallopeptidase 9 as biomarkers of mesial temporal lobe epilepsy with hippocampus sclerosis. J Mol Neurosci, 2018, 66(4): 482-491. DOI: 10.1007/s12031-018-1164-5.
[7]
尹克杰,丁亚冬. MRI阴性颞叶癫痫相关研究进展.功能与分子医学影像学(电子版), 2019, 8(2): 1659-1665. DOI: 10.3969/j.issn.2095-2252.2019.02.008.
[8]
Azab SF, Sherief LM, Saleh SH, et al. Childhood temporal lobe epilepsy: Correlation between electroencephalography and magnetic resonance spectroscopy: A case-control study. Ital J Pediatr, 2015, 41(4): 32. DOI: 10.1186/s13052-015-0138-2.
[9]
Tellez-Zenteno JF, Hernández-Ronquillo L. A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat, 2012, 2012: 630853. DOI: 10.1155/2012/630853.
[10]
Mo J, Liu ZY, Sun K, et al. Automated detection of hippocampal sclerosis using clinically empirical and radiomics features. Epilepsia, 2019, 60(12): 2519-2529. DOI: 10.1111/epi.16392.
[11]
Muhlhofer W, Tan YL, Mueller SG, et al. MRI-negative temporal lobe epilepsy-What do we know?. Epilepsia, 2017, 58(5): 727-742. DOI: 10.1111/epi.13699.
[12]
Blackmon K, Barr WB, Morrison C, et al. Cortical gray-white matter blurring and declarative memory impairment in MRI-negative temporal lobe epilepsy. Epilepsy Behav, 2019, 97(8): 34-43. DOI: 10.1016/j.yebeh.2019.05.009.
[13]
Zanão TA, Lopes TM, de Campos BM, et al. Patterns of default mode network in temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsy Behav, 2019, 20(10): 106523. DOI: 10.1016/j.yebeh.2019.106523.
[14]
Bennett OF, Kanber B, Hoskote C,et al. Learning to see the invisible: A data-driven approach to finding the underlying patterns of abnormality in visually normal brain magnetic resonance images in patients with temporal lobe epilepsy. Epilepsia, 2019, 60(12): 2499-2507. DOI: 10.1111/epi.16380.
[15]
Vaughan DN, Rayner G, Tailby C, et al. MRI-negative temporal lobe epilepsy: a network disorder of neocortical connectivity. Neurology, 2016, 87(18): 1934-1942. DOI: 10.1212/WNL.0000000000003289.
[16]
石晓静,周宜蓉,雷蕾,等.脑电图检测在颞叶癫痫中的诊断价值.宁夏医科大学学报, 2016, 38(7): 835-837. DOI: 10.16050/j.cnki.issn1674-6309.2016.07.032.
[17]
左晨晨,李伟,张丕宁,等.单体素磁共振波谱在无病灶颞叶癫痫诊断中的应用.青岛大学医学院学报, 2017, 53(3): 272. DOI: 10.13361/j.qdyxy.201703006.
[18]
Hardan AY, Minshew NJ, Melhem NM, et al. An MRI and proton spectroscopy study of the thalamus in children with autism. Psychiatry Res, 2008, 163(2): 97-105. DOI: 10.1016/j.pscychresns.2007.12.002.
[19]
Hammen T, Schwarz M, Doelken M, et al. 1H-MRspectroscopy indicates severity markers in temporal lobe epilepsy: corelations between metabolic alterations seizures and epileptic discharges in EEG. Epilepsia, 2007, 48(2): 263-269. DOI: 10.1111/j.1528-1167.2006.00856.x.
[20]
Urrila AS, Hakkarainen A, Heikkine S, et al. Stimulus-induced brain lactate: effeets of aging and prolonged wakefulness. J sleep Res, 2004, 13(2): 111-119. DOI: 10.1111/j.1365-2869.2004.00401.x.
[21]
Levitt JG, O'Neill J, Blanton RE, et al. Proton magnetic resonanee spectrosecopic imaging of the brain in childhood antism. Biol Psychiatry, 2003, 54(12): 1355-1366. DOI: 10.1016/s0006-3223(03)00688-7.
[22]
赵春雷,陈自谦,钱根年,等. MRI在难治性颞叶癫痫定侧诊断中的价值研究.中国CT和MRI杂志, 2016, 14(3): 32-34. DOI: 10.3969/j.issn.1672-5131.2016.03.010.
[23]
Xu MY, Ergene E, Zagardo M, et al. Proton MR spectroscopy in patients with structural MRI-negative temporal lobe epilepsy. J Neureimaging, 2015, 25(6): 1030-1037. DOI: 10.1111/jon.12263.
[24]
Vaughan DN, Rayner G, Tailby C, et al. MRI-negative temporal lobe epilepsy: A network disorder of neocortical connectivity. Neurology, 2016, 87(18): 1934-1942. DOI: 10.1212/WNL.0000000000003289.
[25]
Helmstaedter C, Petzold I, Bien CG. The cognitive consequence of resecting nonlesional tissues in epilepsy surgery-results from MRI-and histopathology-negative patients with temporal lobe epilepsy. Epilepsia, 2011, 52(8): 1402-1408. DOI: 10.1111/j.1528-1167.2011.03157.x.
[26]
Yang PF, Pei JS, Zhang HJ, et al. Long-term epilepsy surgery outcomes in patients with PET-positive, MRI-negative temporal lobe epilepsy. Epilepsy Behav, 2014, 41(12): 91-97. DOI: 10.1016/j.yebeh.2014.09.054.
[27]
Connelly A, Van Paesschen W, Porter DA, et al. Proton magnetic resonance spectroscopy in MRI-negative temporal lobe epilepsy. Neurology, 1998, 51(1): 61-66. DOI: 10.1212/wnl.51.1.61.
[28]
Mueller SG, Ebel A, Barakos J, et al. Widespread extrahippocampal NAA/(Cr+Cho) abnormalities in TLE with and without mesial temporal sclerosis. J Neurol, 2011, 258(4): 603-612. DOI: 10.1007/s00415-010-5799-6.
[29]
Menlove L, Reilly C. Memory in children with epilepsy: a systematic review. Seizure, 2015, 25(2): 126-135. DOI: 10.1016/j.seizure.2014.10.002.
[30]
Cormack F, Vargha-Khadem F, Wood SJ, et al. Memory in paediatric temporal lobe epilepsy: effects of lesion type and side. Epilepsy Res, 2012, 98(2-3): 255-259. DOI: 10.1016/j.eplepsyres.2011.09.004.
[31]
Hermann BP, Seidenberg M, Haltiner A, et al. Relationship of age at onset, chronologic age, and adequacy of preoperative performance to verbal memory change after anterior temporal lobectomy. Epilepsia, 1995, 36(2): 137-145. DOI: 10.1111/j.1528-1157.1995.tb00972.x.
[32]
Sepeta LN, Berl MM, Gaillard WD. Imaging episodic memory during development and childhood epilepsy. J Neurodev Disord, 2018, 10(1): 40. DOI: 10.1186/s11689-018-9255-8.
[33]
Berl MM, Mayo J, Parks EN, et al. Regional differences in the developmental trajectory of lateralization of the language network. Hum Brain Mapp, 2014, 35(1): 270-284. DOI: 10.1002/hbm.22179.
[34]
Everts R, Lidzba K, Wilke M, et al. Strengthening of laterality of verbal and visuospatial functions during childhood and adolescence. Hum Brain Mapp, 2009, 30(2): 473-483. DOI: 10.1002/hbm.20523.
[35]
Shurtleff HA, Barry D, Firman T, et al. Impact of epilepsy surgery on development of preschool children: identification of a cohort likely to benefit from early intervention. J Neurosurg Pediatr, 2015, 16(4): 383-392. DOI: 10.3171/2015.3.PEDS14359.
[36]
Ma W, Li C, Liu LP, et al. Pre-operative interictal discharge patterns and magnetic resonance imaging findings affect prognosis of temporal lobe epilepsy surgery. Eur Neurol, 2019, 81(3-4): 152-162. DOI: 10.1159/000501002.
[37]
Mariani V, Revay M, D'Orio P, et al. Prognostic factors of postoperative seizure outcome in patients with temporal lobe epilepsy and normal magnetic resonance imaging. J Neurol, 2019, 266(9): 2144-2156. DOI: 10.1007/s00415-019-09394-x.
[38]
Pimentel-Silva LR, Casseb RF, Cordeiro MM, et al. Interactions between in vivo neuronal-glial markers, side of hippocampal sclerosis, and pharmacoresponse in temporal lobe epilepsy. Epilepsia, 2020, 61(5): 1008-1018. DOI: 10.1111/epi.16509.
[39]
蔡鹏杰,李辉煌,周实.儿童颞叶癫痫的临床特点及MRS的定位诊断价值分析.现代医用影像学, 2020, 29(3): 413-416.
[40]
Arya R, Mangano FT, Horn PS, et al. Long-term seizure outcomes after pediatric temporal lobectomy: does brain MRI lesion matter?. J Neurosurg Pediatr, 2019, 1-9. published online ahead of print, 2019 DOI: . DOI: 10.3171/2019.4.PEDS18677.
[41]
Campos BAG, Yasuda CL, Castellano G, et al. Proton MRS may predict AED response in patients with TLE. Epilepsia, 2010, 51(5): 783-788. DOI: 10.1111/j.1528-1167.2009.02379.x.
[42]
Fojtiková D, Brázdil M, Skoch A, et al. Magnetic resonance spectroscopy of the thalamus inpatients with mesial temporal lobe epilepsy and hippocampal sclerosis. Epileptic Disord, 2007, 9(Suppl 1): S59-67. DOI: 10.1684/epd.2007.0148.
[43]
Tahry REI, Santos SF, Vrielynck P, et al. Additional clinical value of voxel-based morphometric MRI post-processing for MRI-negative epilepsies: a prospective study. Epileptic Disord, 2020, 22(2): 156-164. DOI: 10.1684/epd.2020.1152.
[44]
Ito YJ, Maesawa S, Bagarinao E, et al. Subsecond EEG-fMRI analysis for presurgical evaluation in focal epilepsy. J Neurosurg, 2020, 13(3): 1-10. DOI: 10.3171/2020.1.JNS192567.

PREV The value of apparent diffusion coefficient histogram in distinguishing ependymoma from anaplastic ependymoma
NEXT Correlation research between FLAIR vascular hyperintensities and cerebral infarction in short term after transient ischemic attack of the internal carotid artery
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn