Share:
Share this content in WeChat
X
REVIEW
Research progress of magnetic resonance imaging technology in the detection, diagnosis and efficacy evaluation of pituitary tumors
WANG Mengke  BAI Yan  FENG Qin  ZHANG Menghuan  WANG Meiyun 

Cite this article as: Wang MK, Bai Y, Feng Q, et al. Research progress of magnetic resonance imaging technology in the detection, diagnosis and efficacy evaluation of pituitary tumors[J]. Chin J Magn Reson Imaging, 2021, 12(1): 85-88. DOI:10.12015/issn.1674-8034.2021.01.019.


[Abstract] With the development of magnetic resonance imaging technology, the detection rate of pituitary tumors is getting higher and higher, especially small pituitary tumors. Magnetic resonance imaging technology can detect pituitary tumors, and evaluate its nature, response to clinical treatment and prognosis. Different MRI examination methods will also increase the diagnosis rate of pituitary tumors or better evaluate the different nature of pituitary tumors. For example, artificial intelligence and imaging radiomics methods can detect the hardness of tumors. The apparent diffusion coefficient value is correlated with the consistency of tumor softness and hardness; Magnetization transfer imaging can distinguish prolactinoma from non-functioning adenoma; 3.0 T has a higher detection rate of pituitary tumors than 1.5 T MRI. New magnetic resonance imaging techniques such as magnetic resonance elastography can determine the hardness of pituitary tumors and provide important indicators for surgery. Meanwhile, different inspection techniques can also be used to predict the effects of treatment methods and the prognosis of diseases.
[Keywords] pituitary tumor;magnetic resonance imaging;magnetic resonance elastography;artificial intelligence;imageomics

WANG Mengke1   BAI Yan2   FENG Qin1   ZHANG Menghuan1   WANG Meiyun2*  

1 Department of Radiology, Zhengzhou University People's Hospital, Zhengzhou 450003, China

2 Medical imaging department, Henan Provincial People's Hospital, Zhengzhou 450003, China

*Corresponding author: Wang MY, E-mail: mywang@ha.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS  This article is supported by the National Natural Science Foundation of China No. 81720108021 Scientific and Technological Research Project of Henan Province No. 182102310496
Received  2020-09-18
Accepted  2020-11-30
DOI: 10.12015/issn.1674-8034.2021.01.019
Cite this article as: Wang MK, Bai Y, Feng Q, et al. Research progress of magnetic resonance imaging technology in the detection, diagnosis and efficacy evaluation of pituitary tumors[J]. Chin J Magn Reson Imaging, 2021, 12(1): 85-88. DOI:10.12015/issn.1674-8034.2021.01.019.

1
Hughes JD, Fattahi N, Van Gompel J, et al. Magnetic resonance elastography detects tumoral consistency in pituitary macroadenomas. Pituitary, 2016, 19(3): 286-292. DOI: 10.1007/s11102-016-0706-5
2
Hughes JD, Retzlaff A, Sims J, et al. Adenoid cystic carcinoma metastatic to the pituitary: a case report and discussion of potential diagnostic value of magnetic resonance elastography in pituitary tumors. World Neurosurg, 2016, 91: 669: e11-669.e6.69E14. DOI: 10.1016/j.wneu.2016.03.044
3
Sylvester PT, Evans JA, Zipfel GJ, et al. Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progression-free survival for pituitary adenomas. Pituitary, 2015, 18(1): 72-85. DOI: 10.1007/s11102-014-0560-2
4
Bonneville F, Rivière LD, Petersenn S, et al. MRI T2 signal intensity and tumor response in patients with GH-secreting pituitary macroadenoma: PRIMARYS post-hoc analysis. Eur J Endocrinol, 2018, EJE-18-0254.R2. [ DOI: ]. DOI: 10.1530/EJE-18-0254
5
Potorac I, Petrossians P, Daly AF, et al. T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocr Relat Cancer, 2016, 23(11): 871-881. DOI: 10.1530/ERC-16-0356
6
Zhang S, Song G, Zang Y, et al. Non-invasive radiomics approach potentially predicts non-functioning pituitary adenomas subtypes before surgery. Eur Radiol, 2018, 28(9): 3692-3701. DOI: 10.1007/s00330-017-5180-6
7
Niu J, Zhang S, Ma S, et al. Preoperative prediction of cavernous sinus invasion by pituitary adenomas using a radiomics method based on magnetic resonance images. Eur Radiol, 2019, 29(3): 1625-1634. DOI: 10.1007/s00330-018-5725-3
8
Fan Y, Liu Z, Hou B, et al. Development and validation of an MRI-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma. Eur J Radiol, 2019,121: 108647. DOI: 10.1016/j.ejrad.2019.108647
9
Zeynalova A, Kocak B, Durmaz ES, et al. Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI. Neuroradiology, 2019, 61(7): 767-774. DOI: 10.1007/s00234-019-02211-2
10
Ugga L, Cuocolo R, Solari D, et al. Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology, 2019, 61(12): 1365-1373. DOI: 10.1007/s00234-019-02266-1
11
Liu YQ, Gao BB, Dong B, et al. Preoperative vascular heterogeneity and aggressiveness assessment of pituitary macroadenoma based on dynamic contrast-enhanced MRI texture analysis. Eur J Radiol, 2020, 129: 109125. DOI: 10.1016/j.ejrad.2020.109125
12
Cuocolo R, Ugga L, Solari D, et al. Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI. Neuroradiology, 2020, 62(12): 1649-1656. DOI: 10.1007/s00234-020-02502-z
13
Chowdhury IN, Sinaii N, Oldfield EH, et al. A change in pituitary magnetic resonance imaging protocol detects ACTH-secreting tumours in patients with previously negative results. Clin Endocrinol (Oxf), 2010, 72(4): 502-506. DOI: 10.1111/j.1365-2265.2009.03646.x
14
Varrassi M, Bellisari FC, Bruno F, et al. High-resolution magnetic resonance imaging at 3 T of pituitary gland: advantages and pitfalls. Gland Surg, 2019, 8(Suppl 3): S208-S215. DOI: 10.21037/gs.2019.06.08
15
Bette S, Butenschön VM, Wiestler B, et al. MRI criteria of subtypes of adenomas and epithelial cysts of the pituitary gland. Neurosurg Rev, 2020, 43(1): 265-272. DOI: 10.1007/s10143-018-1049-7
16
Wu CX, Meng M, Wang Z, et al. MRI evaluation of pituitary macroadenomas tumor consistency. Chin J Magn Reson Imaging, 2017, 8(10): 721-725. DOI: 10.12015/issn.1674-8034.2017.10.001
17
Kim HY, Kim ST, Kim HJ, et al. Differentiation of postoperative changes and residual tumors in dynamic contrast-enhanced sella MRI after transsphenoidal resection of pituitary adenoma. Medicine (Baltimore), 2019, 98(27): e16089. DOI: 10.1097/MD.0000000000016089
18
Pierallini A, Caramia F, Falcone C, et al. Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging: initial experience. Radiology, 2006, 239(1): 223-231. DOI: 10.1148/radiol.2383042204
19
Conficoni A, Feraco P, Mazzatenta D, et al. Biomarkers of pituitary macroadenomas aggressive behaviour: a conventional MRI and DWI 3 T study. Br J Radiol, 2020, 93(1113): 20200321. DOI: 10.1259/bjr.20200321
20
Chittiboina P, Montgomery BK, Millo C, et al. High-resolution (18) F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease. J Neurosurg, 2015, 122(4): 791-797. DOI: 10.3171/2014.10.JNS14911
21
Barnhill E, Davies PJ, Ariyurek C, et al. Heterogeneous multifrequency direct inversion (hmdi) for magnetic resonance elastography with application to a clinical brain exam. Med Image Anal, 2018, 46: 180-188. DOI: 10.1016/j.media.2018.03.003
22
Bertalan G, Klein C, Schreyer S, et al. Biomechanical properties of the hypoxic and dying brain quantified by magnetic resonance elastography. Acta Biomater, 2020, 101: 395-402. DOI: 10.1016/j.actbio.2019.11.011
23
Vitale G, Tortora F, Baldelli R, et al. Pituitary magnetic resonance imaging in Cushing's disease. Endocrine, 2017, 55(3): 691-696. DOI: 10.1007/s12020-016-1038-y
24
de Rotte AA, van der Kolk AG, Rutgers D, et al. Feasibility of high-resolution pituitary MRI at 7.0 tesla. Eur Radiol, 2014, 24(8): 2005-2011. DOI: 10.1007/s00330-014-3230-x
25
Smith KA, Leever JD, Chamoun RB. Predicting consistency of meningioma by magnetic resonance imaging. J Neurol Surg B Skull Base, 2015, 76(3): 225-229. DOI: 10.1055/s-0034-1543965
26
Yao A, Rutland JW, Verma G, et al. Pituitary adenoma consistency: direct correlation of ultrahigh field 7T MRI with histopathological analysis. Eur J Radiol, 2020, 126: 108931. DOI: 10.1016/j.ejrad.2020.108931
27
Satogami N, Miki Y, Koyama T, Kataoka M, et al. Normal pituitary stalk: high-resolution MR imaging at 3 T. AJNR Am J Neuroradiol, 2010, 31(2): 355-359. DOI: 10.3174/ajnr.A1836
28
Rutland JW, Pawha P, Belani P, et al. Tumor T2 signal intensity and stalk angulation correlates with endocrine status in pituitary adenoma patients: a quantitative 7 tesla MRI study. Neuroradiology, 2020, 62(4): 473-482. DOI: 10.1007/s00234-019-02352-4
29
Hlaváč M, Knoll A, Etzrodt-Walter G, et al. Intraoperative MRI in transsphenoidal resection of invasive pituitary macroadenomas. Neurosurg Rev, 2019, 42(3): 737-743. DOI: 10.1007/s10143-019-01102-7
30
Feng XY, Pang HP. The clinical application of intraoperative MRI, Chin J Magn Reson Imaging, 2014, 5(Suppl 1): 5-9. DOI: 10.3969/j.issn.1674-8034.2014.05.S1.002
31
Jones PS, Swearingen B. Intraoperative MRI for pituitary adenomas. Neurosurg Clin N Am, 2019, 30(4): 413-420. DOI: 10.1016/j.nec.2019.05.003
32
Galm BP, Martinez-Salazar EL, Swearingen B, et al. MRI texture analysis as a predictor of tumor recurrence or progression in patients with clinically non-functioning pituitary adenomas. Eur J Endocrinol, 2018, 179(3): 191-198. DOI: 10.1530/EJE-18-0291

PREV Research progress of correlation between FLAIR vascular hyperintensity and ischemic stroke
NEXT The pathogenesis of iron and oxidative stress in multiple sclerosis and advances in MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn