Share:
Share this content in WeChat
X
REVIEW
The pathogenesis of iron and oxidative stress in multiple sclerosis and advances in MRI
CHEN Qianlan  YE Haiqi  CHEN Weiwei 

Cite this article as: Chen QL, Ye HQ, Chen WW. The pathogenesis of iron and oxidative stress in multiple sclerosis and advances in MRI[J]. Chin J Magn Reson Imaging, 2021, 12(1): 89-92. DOI:10.12015/issn.1674-8034.2021.01.020.


[Abstract] Multiple sclerosis (MS) is the most common inflammatory demyelinating disease in the central nervous system, and its pathogenesis is still unknown. In recent years, studies have shown that iron and oxidative stress are involved in the pathogenesis of MS, but the specific temporal and spatial dynamic changes have not been fully clarified. Therefore, the non-invasive quantitative evaluation of iron and oxidative stress in MS lesions with multi-parameter MRI is of great significance to reveal the different pathological characteristics of MS in different stages. This article reviews the potential pathogenic mechanism of iron and oxidative stress in multiple sclerosis and the corresponding research progress of MRI.
[Keywords] multiple sclerosis;oxidative stress;iron deposition;magnetic resonance imaging

CHEN Qianlan   YE Haiqi   CHEN Weiwei*  

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

*Corresponding author: Chen WW, E-mail: chenweiwei_tjh@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This article is supported by the National Natural Science Found No. 81401390
Received  2020-08-08
Accepted  2020-11-20
DOI: 10.12015/issn.1674-8034.2021.01.020
Cite this article as: Chen QL, Ye HQ, Chen WW. The pathogenesis of iron and oxidative stress in multiple sclerosis and advances in MRI[J]. Chin J Magn Reson Imaging, 2021, 12(1): 89-92. DOI:10.12015/issn.1674-8034.2021.01.020.

1
Lucchinetti C, Brück W, Parisi J, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol, 2000, 47(6): 707-717. DOI: 10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q
2
Stephenson E, Nathoo N, Mahjoub Y, et al. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol, 2014, 10(8): 459-468. DOI: 10.1038/nrneurol.2014.118
3
Ropele S, Enzinger C, Fazekas F. Iron Mapping in multiple sclerosis. Neuroimag Clin N Am, 2017, 27(2): 335-342. DOI: 10.1016/j.nic. 2016.12.003
4
Frischer JM, Weigand SD, Guo Y, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol, 2015, 78(5): 710-721. DOI: 10.1002/ana.24497
5
Kuhlmann T, Ludwin S, Prat A, et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol, 2017, 133(1): 13-24. DOI: 10.1007/s00401-016-1653-y
6
van der Valk P, De Groot CJ. Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropath Appl Neuro, 2000, 26(1): 2-10. DOI: 10.1046/j.1365-2990.2000.00217.x
7
Mews I, Bergmann M, Bunkowski S, et al. Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Mult Scler, 1998, 4(2): 55-62. DOI: 10.1177/135245859800400203
8
Engberink RD, van der Pol SM, Walczak P, et al. Magnetic resonance imaging of monocytes labeled with ultrasmall superparamagnetic particles of iron oxide using magnetoelectroporation in an animal model of multiple sclerosis. Mol Imaging, 2010, 9(5): 268-277. DOI: 10.2310/7290.2010.00016
9
Brück W, Bitsch A, Kolenda H, et al. Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol, 1997, 42(5): 783-793. DOI: 10.1002/ana.410420515
10
Granziera C, Reich DS. Gadolinium should always be used to assess disease activity in MS-Yes. Mult Scler, 2020, 26(7): 765-766. DOI: 10.1177/1352458520911174
11
Davis M, Auh S, Riva M, et al. Ring and nodular multiple sclerosis lesions: a retrospective natural history study. Neurology, 2010, 74(10): 851-856. DOI: 10.1212/WNL.0b013e3181d31df5
12
Gaitán MI, Shea CD, Evangelou IE, et al. Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions. Ann Neurol, 2011, 70(1): 22-29. DOI: 10.1002/ana.22472
13
Maggi P, Macri SM, Gaitán MI, et al. The formation of inflammatory demyelinated lesions in cerebral white matter. Ann Neurol, 2014, 76(4): 594-608. DOI: 10.1002/ana.24242
14
Kirschbaum K, Sonner JK, Zeller MW, et al. In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. P Nati Acad Sci USA, 2016, 113(46): 13227-13232. DOI: 10.1073/pnas.1609397113
15
Tourdias T, Roggerone S, Filippi M, et al. Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium- and superparamagnetic iron oxide-enhanced MR imaging. Radiology, 2012, 264(1): 225-233. DOI: 10.1148/radiol.12111416
16
Kerbrat A, Combès B, Commowick O, et al. USPIO-positive MS lesions are associated with greater tissue damage than gadolinium-positive-only lesions during 3-year follow-up. Mult Scler, 2017, 24(14): 1852-1861. DOI: 10.1177/1352458517736148
17
Connor JR, Menzies SL, Martin SM, et al. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res, 1990, 27(4): 595-611. DOI: 10.1002/jnr.490270421
18
Chen W, Gauthier SA, Gupta A, et al. Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology, 2014, 271(1): 183-192. DOI: 10.1148/radiol.13130353
19
Zhang Y, Gauthier SA, Gupta A, et al. Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM). J Magn Reson Imaging, 2016, 44(2): 426-432. DOI: 10.1002/jmri.25144
20
Hametner S, Dal Bianco A, Trattnig S, et al. Iron related changes in MS lesions and their validity to characterize MS lesion types and dynamics with Ultra-high field magnetic resonance imaging. Brain Pathol, 2018, 28(5): 743-749. DOI: 10.1111/bpa.12643
21
Lee NJ, Ha SK, Sati P, et al. Potential role of iron in repair of inflammatory demyelinating lesions. J Clin Invest, 2019, 129(10): 4365-4376. DOI: 10.1172/JCI126809
22
Haider L, Simeonidou C, Steinberger G, et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosur Ps, 2014, 85(12): 1386-1395. DOI: 10.1136/jnnp-2014-307712
23
Zivadinov R, Heininen-Brown M, Schirda CV, et al. Abnormal subcortical deep-gray matter susceptibility-weighted imaging filtered phase measurements in patients with multiple sclerosis: a case-control study. NeuroImage, 2012, 59(1): 331-339. DOI: 10.1016/j.neuroimage.2011.07.045
24
Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol, 2009, 27: 451-483. DOI: 10.1146/annurev.immunol.021908.132532
25
Kroner A, Greenhalgh AD, Zarruk JG, et al. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron, 2014, 83(5): 1098-1116. DOI: 10.1016/j.neuron.2014.07.027
26
Dal-Bianco A, Grabner G, Kronnerwetter C, et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol, 2017, 133(1): 25-42. DOI: 10.1007/s00401-016-1636-z
27
Dunham J, Bauer J, Campbell GR, et al. Oxidative injury and iron redistribution are pathological hallmarks of marmoset experimental autoimmune encephalomyelitis. J Neuropath Exp Neur, 2017, 76(6): 467-478. DOI: 10.1093/jnen/nlx034
28
Elliott C, Wolinsky JS, Hauser SL, et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler, 2019, 25(14): 1915-1925. DOI: 10.1177/1352458518814117
29
Rubin R. "Smoldering" brain lesions might signal severe multiple sclerosis. JAMA, 2019, 322(12): 1133. DOI: 10.1001/jama.2019.14344
30
Yao Y, Nguyen TD, Pandya S, et al. Combining quantitative susceptibility mapping with automatic zero reference (QSM0) and myelin water fraction imaging to quantify iron-related myelin damage in chronic active MS lesions. AJNR Am J Neuroradiol, 2018, 39(2): 303-310. DOI: 10.3174/ajnr.A5482
31
Harrison DM, Li X, Liu H, et al. Lesion heterogeneity on high-field susceptibility MRI is associated with multiple sclerosis severity. AJNR Am J Neuroradiol, 2016, 37(8): 1447-1453. DOI: 10.3174/ajnr.A4726
32
Absinta M, Sati P, Schindler M, et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest, 2016, 126(7): 2597-2609. DOI: 10.1172/JCI86198
33
Zhang S, Nguyen TD, Hurtado Rúa SM, et al. Quantitative susceptibility mapping of time-dependent susceptibility changes in multiple sclerosis lesions. AJNR Am J Neuroradiol, 2019, 40(6): 987-993. DOI: 10.3174/ajnr.A6071
34
de Rochefort L, Liu T, Kressler B, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med, 2010, 63(1): 194-206. DOI: 10.1002/mrm.22187
35
Oude Engberink RD, Blezer EL, Dijkstra CD, et al. Dynamics and fate of USPIO in the central nervous system in experimental autoimmune encephalomyelitis. NMR Biomed, 2010, 23(9): 1087-1096. DOI: 10.1002/nbm.1536
36
Agresti C, Mechelli R, Olla S, et al. Oxidative status in multiple sclerosis and off-targets of antioxidants: the case of edaravone. Curr Med Chem, 2019, 27(13): 2095-2105. DOI: 10.2174/0929867326666190124122752
37
Nikić I, Merkler D, Sorbara C, et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med, 2011, 17(4): 495-499. DOI: 10.1038/nm.2324
38
Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol, 2004, 251(3): 261-268. DOI: 10.1007/s00415-004-0348-9
39
van Horssen J, Schreibelt G, Drexhage J, et al. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radical Bio Med, 2008, 45(12): 1729-1737. DOI: 10.1016/j.freeradbiomed.2008.09.023
40
Thorburne SK, Juurlink BH. Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem, 1996, 67(3): 1014-1022. DOI: 10.1046/j.1471-4159.1996.67031014.x
41
Zhang X, Surguladze N, Slagle-Webb B, et al. Cellular iron status influences the functional relationship between microglia and oligodendrocytes. Glia, 2006, 54(8): 795-804. DOI: 10.1002/glia.20416
42
Haider L. Inflammation, iron, energy failure, and oxidative stress in the pathogenesis of multiple sclerosis. Oxid Med Cell Longev, 2015, 2015: 725370. DOI: 10.1155/2015/725370
43
Siotto M, Filippi MM, Simonelli I, et al. Oxidative stress related to iron metabolism in relapsing remitting multiple sclerosis patients with low disability. Front Neurosci, 2019, 13: 86. DOI: 10.3389/fnins.2019.00086
44
Padureanu R, Albu CV, Mititelu RR, et al. Oxidative stress and inflammation interdependence in multiple sclerosis. J Clin Med, 2019, 8(11): 1815. DOI: 10.3390/jcm8111815
45
Berkowitz BA. Oxidative stress measured in vivo without an exogenous contrast agent using QUEST MRI. J Magn Reson, 2018, 291: 94-100. DOI: 10.1016/j.jmr.2018.01.013
46
Berkowitz BA, Lewin AS, Biswal MR, et al. MRI of retinal free radical production with laminar resolution in vivo. Invest Ophthalmol Vis Sci, 2016, 57(2): 577-585. DOI: 10.1167/iovs.15-18972
47
Berkowitz BA, Romero R, Podolsky RH, et al. QUEST MRI assessment of fetal brain oxidative stress in utero. NeuroImage, 2019, 200: 601-606. DOI: 10.1016/j.neuroimage.2019.05.069
48
Kühl A, Dixon A, Hali M, et al. Novel QUEST MRI in vivo measurement of noise-induced oxidative stress in the cochlea. Sci Rep, 2019, 9(1): 16265. DOI: 10.1038/s41598-019-52439-4
49
Tain RW, Scotti AM, Cai K. Improving the detection specificity of endogenous MRI for reactive oxygen species (ROS). J Magn Reson Imaging, 2019, 50(2): 583-591. DOI: 10.1002/jmri.26629
50
Shaghaghi M, Chen W, Scotti A, et al. In vivo quantification of proton exchange rate in healthy human brains with omega plot. Quant Imaging Med Surg, 2019, 9(10): 1686-1696. DOI: 10.21037/qims.2019.08.06

PREV Research progress of magnetic resonance imaging technology in the detection, diagnosis and efficacy evaluation of pituitary tumors
NEXT Research progress on brain fMRI and PET imaging of acupuncture at Taixi point
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn