Share:
Share this content in WeChat
X
REVIEW
Research progress of functional magnetic resonance imaging in radiation-induced brain injury after radiotherapy of nasopharyngeal carcinoma
SONG Xiaohan  YANG Jinrong  WANG Lijun 

Cite this article as: Song XH, Yang JR, Wang LJ. Research progress of functional magnetic resonance imaging in radiation-induced brain injury after radiotherapy of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(1): 96-99. DOI:10.12015/issn.1674-8034.2021.01.022.


[Abstract] Nasopharyngeal carcinoma (NPC) is treated primarily by radiotherapy. Despite the continuous improvement of radiotherapy technology, radiotherapy of NPC will inevitably cause varying degrees of damage to normal tissues. Brain injury resulting from radiotherapy is one of the most common complications in patients with NPC following radiotherapy, which affects the life quality of patients seriously. Therefore, the early diagnosis of radiation-induced brain injury is particularly important. And the rapid development of functional MRI provides new methods for the early diagnosis of brain injury after radiotherapy of NPC.
[Keywords] nasopharyngeal carcinoma;brain injury after radiotherapy;magnetic resonance imaging;functional magnetic resonance imaging

SONG Xiaohan   YANG Jinrong   WANG Lijun*  

Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

*Corresponding author: Wang LJ, E-mail: wanglj345@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This article is supported by the Natural Science Foundation of Liaoning Province No. 20180550719 The Teaching Reform Project of Dalian Medical University No. DYLX19046
Received  2020-09-16
Accepted  2020-11-28
DOI: 10.12015/issn.1674-8034.2021.01.022
Cite this article as: Song XH, Yang JR, Wang LJ. Research progress of functional magnetic resonance imaging in radiation-induced brain injury after radiotherapy of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(1): 96-99. DOI:10.12015/issn.1674-8034.2021.01.022.

1
Gokce T, Unlu I, Akcay C. Evaluation of overall survival of nasopharyngeal carcinoma patients treated in ten years at a single institution. J BUON, 2010, 15(1): 36-42.
2
Makale MT, McDonald CR, Hattangadi-Gluth JA, et al. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol, 2017, 13(1): 52-64. DOI: 10.1038/nrneurol.2016.185
3
Duan FH, Qiu SJ, Zhang Y, et al. Correlation between the differences of white matter microstructure and cognition in radiotherapy and non-radiotherapy patients for nasopharyngeal carcinoma. J Clin Radiol, 2016, 35(11): 1642-1646.
4
Chen W, Li J, Zhang J, et al. Magnetic resonance spectroscopic imaging of brain injury after nasopharyngeal cancer radiation in early delayed reaction. Genet Mol Res, 2014,13(3): 6848-6854. DOI: 10.4238/2014.August.29.6
5
Bálentová S, Hnilicová P, Kalenská D, et al. Metabolic and histopathological changes in the brain and plasma of rats exposed to fractionated whole-brain irradiation. Brain Res, 2019, 1708: 146-159. DOI: 10.1016/j.brainres.2018.12.022
6
Wang H, Qiu S, Lv X, et al. Diffusion tensor imaging and 1H-MRS study on radiation-induced brain injury after nasopharyngeal carcinoma radiotherapy. Clin Radiol, 2012, 67(4): 340-345. DOI: 10.1016/j.crad.2011.09.008
7
Li GH, Li JC, Hu CH. Early changes of 1H-MRS and its correlation with neurocognitive function after radiotherapy for nasopharyngeal carcinoma. Journal of Clinical Radiology, 2018, 37(11): 1804-1808. DOI: 10.13437/j.cnki.jcr.2018.11.010
8
Balentova S, Adamkov M. Molecular, cellular and functional effects of radiation-induced brain injury: a review. Int J Mol Sci, 2015, 16(11): 27796-27815. DOI: 10.3390/ijms161126068
9
Chen WS, Li JJ, Hong L, et al. Diagnostic value of magnetic resonance spectroscopy in radiation encephalopathy induced by radiotherapy for patients with nasopharyngeal carcinoma: a Meta-analysis. Biomed Res Int, 2016, 20166: 5126074. DOI: 10.1155/2016/5126074
10
Leng X, Fang P, Lin H, et al. Structural MRI research in patients with nasopharyngeal carcinoma following radiotherapy: a DTI and VBM study. Oncol Lett, 2017, 14(5): 6091-6096. DOI: 10.3892/ol.2017.6968
11
Chen W, Qiu S, Li J, et al. Diffusion tensor imaging study on radiation-induced brain injury in nasopharyngeal carcinoma during and after radiotherapy. Tumori, 2015, 101(5): 487-490. DOI: 10.5301/tj.5000348
12
Feng X, Qiu SJ. DTI and DSC-PWI on normal appearing white matter after radiotherapy for nasopharyngeal carcinoma. J Med Imaging, 2013, 23(6): 841-845. DOI: 10.3969/j.issn.1006-9011.2013.06.008
13
Xiong W, Qiu S, Wang H, et al. 1H-MR spectroscopy and diffusion tensor imaging of normal-appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation: initial experience. J Magn Reson Imaging, 2013, 37(1): 101-108. DOI: 10.1002/jmri.23788
14
Li T, Sheng L, Chunyan C, et al. The significance of diffusion tensor magnetic resonance imaging for patients with nasopharyngeal carcinoma and trigeminal nerve invasion. Medicine (Baltimore), 2017, 96: e6072.96(6), e6072. DOI: 10.1097/MD.0000000000006072
15
Leng X, Fang P, Lin H, et al. Application of a machine learning method to whole brain white matter injury after radiotherapy for nasopharyngeal carcinoma. Cancer Imaging, 2019, 19(1): 19. DOI: 10.1186/s40644-019-0203-y
16
Duan F, Cheng J, Jiang J, et al. Whole-brain changes in white matter microstructure after radiotherapy for nasopharyngeal carcinoma: a diffusion tensor imaging study. Eur Arch Otorhinolaryngol, 2016, 273(12): 4453-4459. DOI: 10.1007/s00405-016-4127-x
17
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. J Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508
18
Zhang R, Bai Y, Wei W, et al. Basic principles of intravoxel incoherent motion and diffusional kurtosis imaging and their applications in central nervous system diseases. Chin J Magn Reson Imaging, 2020, 11(9): 804-808. DOI: 10.12015/issn.1674-8034.2020.09.019
19
Zhang JH, Lang N, Yuan HS. Research advances in diffuseional kurtosiss imaging. Chin J Magn Reson Imaging, 2018, 9(4): 316-320. DOI: 10.12015/issn.1674-8034.2018.04.016
20
Wang D, Li YH, Fu J, et al. Diffusion kurtosis imaging study on temporal lobe after nasopharyngeal carcinoma radiotherapy. Brain Res, 2016, 1648: 387-393. DOI: 10.1016/j.brainres.2016.07.041
21
Pan HB, Li YH, Yang YX, et al. Study of microstructure changes in the grey and white matter of temporal lobe after radiotherapy in patients with nasopharyngeal carcinoma by diffusion kurtosis Imaging. Chin Comput Med Imag, 2017, 23(2): 124-130. DOI: 10.19627/j.cnki.cn31-1700/th.2017.02.005
22
Chen H,He HQ,Lu XF,et al. A diffusion kurtosis imaging study of early injury on the white matter of the bilateral temporal lobes and the hippocampus after radiotherapy in nasopharyngeal carcinoma patients. . Chin J Magn Reson Imaging, 2019, 10(1): 1-7. DOI: 10.12015/issn.1674-8034.2019.01.001
23
Lu LY, Si W, Qian W, et al. Diffusion kurtosis as an in vivo imaging Marker of early radiation-induced changes in radiation-induced temporal lobe necrosis in nasopharyngeal carcinoma patients. Clin Neuroradiol, 2018, 28(3): 413-420. DOI: 10.1007/s00062-017-0585-9
24
Klos J, van Laar PJ, Sinnige PF, et al. Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques. Radiother Oncol, 2019, 140:41-53. DOI: 10.1016/j.radonc.2019.05.020
25
Metaweh NA, Azab AO, El Basmy AA, et al. Contrast-enhanced perfusion MR imaging to differentiate between recurrent/residual brain neoplasms and radiation necrosis. Asian Pac J Cancer Prev, 2018, 19(4): 941-948. DOI: 10.22034/APJCP.2018.19.4.941
26
Wang YL, Chen S, Xiao HF, et al. Differentiation between radiation-induced brain injury and glioma recurrence using 3D pCASL and dynamic susceptibility contrast-enhanced perfusion-weighted imaging. Radiother Oncol, 2018, 129(1): 68-74. DOI: 10.1016/j.radonc.2018.01.009
27
Nie lin. Joint application of diffusion-weighted imaging and perfusion-weighted imaging in radiotherapy effect evaluation on nasopharyngeal carcinoma. J Med Imaging, 2017, 27(4): 604-607.
28
Wu X, Gu M, Zhou G, et al. Cognitive and neuropsychiatric impairment in cerebral radionecrosis patients after radiotherapy of nasopharyngeal carcinoma. BMC Neurol, 2014, 14(1): 10. DOI: 10.1186/1471-2377-14-10
29
Zhang YM, Gao JM, Zhou H, et al. Pre-symptomatic local brain activity and functional connectivity alterations in nasopharyngeal carcinoma patients who developed radiation encephalopathy following radiotherapy. Brain Imaging Behav, 2020, 14(5): 1964-1978. DOI: 10.1007/s11682-019-00145-0
30
Qiu YW, Guo Z, Han LJ, et al. Network-level dysconnectivity in patients with nasopharyngeal carcinoma (NPC) early post-radiotherapy: longitudinal resting state fMRI study. Brain Imaging Behav, 2018, 12(5): 1279-1289. DOI: 10.1007/s11682-017-9801-0
31
Chen QY, Lv XF, Zhang SF, et al. Altered properties of brain white matter structural networks in patients with nasopharyngeal carcinoma after radiotherapy. Brain Imaging Behav, 2020, 14(6): 2745-2761. DOI: 10.1007/s11682-019-00224-2
32
Chen SC, Abe Y, Fang PT, et al. Prognosis of hippocampal function after sub-lethal irradiation brain injury in patients with nasopharyngeal carcinoma. Sci Rep, 2017, 7(1): 14697. DOI: 10.1038/s41598-017-13972-2
33
Qiu Y, Guo Z, Han L, et al. Network-level dysconnectivity in patients with nasopharyngeal carcinoma (NPC) early post-radiotherapy: longitudinal resting state fMRI study. Brain Imaging Behav, 2018, 12(5): 1279-1289. DOI: 10.1007/s11682-017-9801-0
34
Ma Q, Zeng LL, Qin J, et al. Radiation-induced cerebellar-cerebral functional connectivity alterations in nasopharyngeal carcinoma patients. Neuroreport, 2017, 28(12): 705-711. DOI: 10.1097/WNR.0000000000000813

PREV Research progress on brain fMRI and PET imaging of acupuncture at Taixi point
NEXT Progress in the application of radiomics in head and neck diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn