Share:
Share this content in WeChat
X
REVIEW
Research status of DCE-MRI semi-quantitative and quantitative analysis in distinguishing benign and malignant cervical lymph nodes
LIU Hong  ZHANG Fengxiang  ZHANG Fang 

Cite this article as: Liu H, Zhang FX, Zhang F. Research status of DCE-MRI semi-quantitative and quantitative analysis in distinguishing benign and malignant cervical lymph nodes[J]. Chin J Magn Reson Imaging, 2021, 12(1): 103-105. DOI:10.12015/issn.1674-8034.2021.01.024.


[Abstract] Inflammation, tuberculosis, tumors, and metastasis can all lead to swelling of cervical lymph nodes. Accurate identification of benign and malignant lymph nodes plays an important role in clinical treatment. The neovascularization of malignant lymph nodes is one of the important factors for the occurrence and metastasis of malignant lymph nodes. DCE-MRI is a functional imaging method that uses a small molecule gadolinium contrast agent to evaluate microvascular permeability. It can accurately reflect the difference in permeability of benign and malignant lymph nodes through semi-quantitative and quantitative parameters, and provide more comprehensive diagnosis and treatment for clinical diagnosis and treatment. information. The author now reviews the research status of DCE-MRI semi-quantitative and quantitative analysis in the identification of benign and malignant cervical lymph nodes in the past five years at home and abroad.
[Keywords] cervical lymph nodes;dynamic contrast enhanced magnetic resonance imaging;semi-quantitative analysis;quantitative analysis;distinguish

LIU Hong1   ZHANG Fengxiang2*   ZHANG Fang2  

1 Inner Mongolia Medical University, Hohhot 010100, China

2 Imaging Department, Ordos Central Hospital, Inner Mongolia, Ordos 017000, China

*Corresponding author: Zhang FX, E-mail: zc890308@sina.com

Conflicts of interest   None.

Received  2020-09-25
Accepted  2020-11-28
DOI: 10.12015/issn.1674-8034.2021.01.024
Cite this article as: Liu H, Zhang FX, Zhang F. Research status of DCE-MRI semi-quantitative and quantitative analysis in distinguishing benign and malignant cervical lymph nodes[J]. Chin J Magn Reson Imaging, 2021, 12(1): 103-105. DOI:10.12015/issn.1674-8034.2021.01.024.

1
Mahe·Muti Biekemulati, Yili·Hamu Yilinuer, Anman·Tai Harelehashi. The clinical value of DCE-MRI technique in differential diagnosis of benign and malignant lymph nodes of head and neck. Chin Med Equipment, 2018, 15(10): 44-47. DOI: 10.3969/J.ISSN.1672-8270.2018.10.013
2
Chawla S, Kim SG, Loevner LA, et al. Prediction of distant metastases in patients with squamous cell carcinoma of head and neck using DWI and DCE-MRI. Head Neck, 2020. [ DOI: ]. DOI: 10.1002/hed.26386
3
Yan S, Wang Z, Li L, et al. Characterization of cervical lymph nodes using DCE-MRI: differentiation between metastases from SCC of head and neck and benign lymph nodes. Clin Hemorheol Microcirc, 2016, 64(2): 213-222. DOI: 10.3233/CH-162065
4
Elhalawani H, Awan MJ, Ding Y, et al. Data from a terminated study on iron oxide nanoparticle magnetic resonance imaging for head and neck tumors. Sci Data, 2020, 7(1): 63. DOI: 10.1038/s41597-020-0392-z
5
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971, 285(21): 1182-1186. DOI: 10.1056/NEJM197111182852108
6
Jászai J, Schmidt MH. Trends and Challenges in Tumor Anti-Angiogenic Therapies. Cells. 2019, 8(9): 1102. DOI: 10.3390/cells8091102
7
Duah E, Teegala LR, Kondeti V, et al. Cysteinyl leukotriene 2 receptor promotes endothelial permeability, tumor angiogenesis, and metastasis. Proc Natl Acad Sci U S A, 2019, 116(1): 199-204. DOI: 10.1073/pnas.1817325115
8
Nie D, Guo L. Advances of quantitative dynamic contrast -enhanced MRI in rectal cancer. Chin J Magn Reson Imaging, 2017, 8(5): 389-393. DOI: 10.12015/issn.1674-8034.2017.05.014
9
Wu Y, Yan Y, Gao X, et al. Gd-encapsulated carbonaceous dots for accurate characterization of tumor vessel permeability in magnetic resonance imaging. Nanomedicine, 2019, 21: 102074. DOI: 10.1016/j.nano.2019.102074
10
Huang B, Kwong DL, Lai V, et al. Dynamic contrast-enhanced magnetic resonance imaging of regional nodal metastasis in nasopharyngeal carcinoma: correlation with nodal staging. Contrast Media Mol Imaging, 2017, 2017: 4519653. DOI: 10.1155/2017/4519653
11
LoCastro E, Paudyal R, Mazaheri Y, et al. Computational modeling of interstitial fluid pressure and velocity in head and neck cancer based on dynamic contrast-enhanced magnetic resonance imaging: feasibility analysis. Tomography, 2020, 6(2): 129-138. DOI: 10.18383/j.tom.2020.00005
12
Cimmino MA, Parodi M, Barbieri F, et al. Dynamic contrast-enhanced mri confirms rapid and sustained improvement of rheumatoid arthritis induced by tocilizumab treatment: an Italian multicentre study. Biologics, 2020, 14: 13-21. DOI: 10.2147/BTT.S209873
13
Ma XZ, Lv K, Sheng JL, et al. Application evaluation of DCE-MRI combined with quantitative analysis of DWI for the diagnosis of prostate cancer. Oncol Lett, 2019, 17(3): 3077-3084. DOI: 10.3892/ol.2019.9988
14
Cheng Q, Huang J, Liang J, et al. The diagnostic performance of DCE-MRI in evaluating the pathological response to neoadjuvant chemotherapy in breast cancer: a Meta-analysis. Front Oncol, 2020, 10: 93. DOI: 10.3389/fonc.2020.00093
15
Umemura Y, Wang D, Peck KK, et al. DCE-MRI perfusion predicts pseudoprogression in metastatic melanoma treated with immunotherapy. J Neurooncol, 2020, 146(2): 339-346. DOI: 10.1007/s11060-019-03379-6
16
Xu Z, Zheng S, Pan A, et al. A multiparametric analysis based on DCE-MRI to improve the accuracy of parotid tumor discrimination. Eur J Nucl Med Mol Imaging, 2019, 46(11): 2228-2234. DOI: 10.1007/s00259-019-04447-9
17
Song C, Cheng P, Cheng J, et al. Differential diagnosis of nasopharyngeal carcinoma and nasopharyngeal lymphoma based on DCE-MRI and RESOLVE-DWI. Eur Radiol, 2020, 30(1): 110-118. DOI: 10.1007/s00330-019-06343-0
18
Li HM, Qiang JW, Ma FH, et al. The value of dynamic contrast-enhanced MRI in characterizing complex ovarian tumors. J Ovarian Res, 2017, 10(1): 4. DOI: 10.1186/s13048-017-0302-y
19
Xu M,Yu YQ, Hou WS. Dynamic contrast -enhanced MRI applications in the nervous system. Int J Med Radiol, 2017, 40(3): 273-276. DOI: 10.19300/j.2017.Z4420
20
Gaustad JV, Hauge A, Wegner CS, et al. DCE-MRI of tumor hypoxia and hypoxia-associated aggressiveness. Cancers (Basel), 2020, 12(7): E1979. DOI: 10.3390/cancers12071979
21
Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med, 1991, 17(2): 357-367. DOI: 10.1002/mrm.1910170208.PMID:2062210
22
Tang L, Wang XJ, Baba H, et al. Gastric cancer and image-derived quantitative parameters: Part 2-a critical review of DCE-MRI and 18F-FDG PET/CT findings. Eur Radiol, 2020, 30(1): 247-260. DOI: 10.1007/s00330-019-06370-x
23
Wang AB, Bian J. The principle and application in clinic of dynamic contrast enhancement magnetic resonance imaging. Chin J Clin Med Imaging, 2016, 27(6): 435-438.
24
Joint Head and Neck Radiotherapy-MRI Development Cooperative. Dynamic contrast-enhanced magnetic resonance imaging for head and neck cancers. Sci Data, 2018, 5: 180008. DOI: 10.1038/sdata.2018.8
25
Li XP,Li HG. The differential value of dynamic contrast enhanced MRI combined with diffusion weighted imaging in diagnosing benign and malignant cervical lymph nodes. J Clin Radiol, 2016, 35(6): 857-861. DOI: 10.13437/j.cnki.jcr.2016.06.011
26
Man YP, Ma LB, Zhou PT, et al. Value of multimode mri in differential diagnosis of benign and malignant cervical lymph nodes. J Clin Radiol, 2019, 38(8): 1385-1390. DOI: 10.13437/j.cnki.jcr.20190828.040
27
Treutlein C, Stollberg A, Scherl C, et al. Diagnostic value of 3D dynamic contrast-enhanced magnetic resonance imaging in lymph node metastases of head and neck tumors: a correlation study with histology. Acta Radiol Open, 2020, 9(8): 2058460120951966. DOI: 10.1177/2058460120951966
28
Chen L, Ye Y, Chen H, et al. Dynamic contrast-enhanced magnetic resonance imaging for differentiating between primary tumor, metastatic node and normal tissue in head and neck cancer. Curr Med Imaging Rev, 2018, 14(3): 416-421. DOI: 10.2174/1573405614666171205105236
29
Wu Q, Shi D, Dou S, et al. Radiomics analysis of multiparametric MRI evaluates the pathological features of cervical squamous cell carcinoma. J Magn Reson Imaging, 2019, 49(4): 1141-1148. DOI: 10.1002/jmri.26301
30
Kim SH, Cho SH. Assessment of pelvic lymph node metastasis in FIGO IB and IIA cervical cancer using quantitative dynamic contrast-enhanced MRI parameters. Diagn Interv Radiol, 2020.
31
Vidiri A, Gangemi E, Ruberto E, et al. Correlation between histogram-based DCE-MRI parameters and 18F-FDG PET values in oropharyngeal squamous cell carcinoma: evaluation in primary tumors and metastatic nodes. PLoS One, 2020, 15(3): e0229611. DOI: 10.1371/journal.pone.0229611
32
Yang X, Liu Y, Chen Y, et al. Evaluation of mesorectal microcirculation with quantitative dynamic contrast-enhanced MRI. AJR Am J Roentgenol, 2020, 29: 1-7. DOI: 10.2214/AJR.19.22116
33
Bontempi P, Busato A, Conti G, et al. Heterogeneous enhancement pattern in DCE-MRI reveals the morphology of normal lymph nodes: an experimental study. Contrast Media Mol Imaging, 2019, 2019: 4096706. DOI: 10.1155/2019/409670
34
Fan WJ, Ma L. Research progress on the applications of dynamic contrast enhanced MR imaging and intravoxel incoherent motion diffusion weighted imaging in diagnosis and treatment of head and neck cancer. Int J Med Radiol, 2019, 42(5): 556-560. DOI: 10.19300/j.2019.Z6799

PREV Progress in the application of radiomics in head and neck diseases
NEXT Research progress of cardiac magnetic resonance in acute myocardial infarction
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn