Share:
Share this content in WeChat
X
REVIEW
Research progress of 1H-MRS in breast cancer
LU Zhongyan  ZHANG Hao  YUE Mengying  SUN Bixia  LUO Yili 

Cite this article as: Lu ZY, Zhang H, Yue MY, et al. Research progress of 1H-MRS in breast cancer[J]. Chin J Magn Reson Imaging, 2021, 12(1): 112-114. DOI:10.12015/issn.1674-8034.2021.01.027.


[Abstract] Breast cancer is a kind of malignant tumor that poses a great threat to women's health, whose morbidity and mortality are on the rise globally. Proton-magnetic resonance spectroscopic (1H-MRI) is a kind of functional magnetic resonance imaging, can detect chemicals in living tissue, noninvasive monitoring of tumor occurrence and development. 1H-MRI can not only combine with other sequences to improve the diagnostic ability of breast cancer, but also has the unique advantages of complementary diagnosis ability for dynamic contrast enhanced MRI (DCE-MRI ) negative breast cancer and evaluating the early efficacy of breast cancer after neoadjuvant chemotherapy (NAC). In this paper, the status, deficiencies and prospects of 1H-MRI in breast cancer are reviewed.
[Keywords] magnetic resonance spectroscopy;breast cancer;diagnose;prognosis evaluation

LU Zhongyan1, 2   ZHANG Hao2*   YUE Mengying1, 2   SUN Bixia1, 2   LUO Yili1, 2  

1 The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China

2 Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

*Corresponding author: Zhang H, E-mail: zhanghao@lzu.edu.cn

Conflicts of interest   None.

Received  2020-08-05
Accepted  2020-11-20
DOI: 10.12015/issn.1674-8034.2021.01.027
Cite this article as: Lu ZY, Zhang H, Yue MY, et al. Research progress of 1H-MRS in breast cancer[J]. Chin J Magn Reson Imaging, 2021, 12(1): 112-114. DOI:10.12015/issn.1674-8034.2021.01.027.

1
Aribal E, Mora P, Chaturvedi AK, et al. Improvement of early detection of breast cancer through collaborative multi-country efforts: observational clinical study. Eur J Radiol, 2019, 115: 31-38. DOI: 10. 1016/j.ejrad.2019.03.020
2
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492
3
Liu L, Chi YR. Current situation and prospect of imaging examination of early breast cancer. Lingnan Modern Clinics in Surgery, 2019, 19(5): 623-627. DOI: 10.3969/j.issn.1009-976X.2019.05.027
4
Sharma U, Jagannathan NR. Breast cancer metabolomics using NMR. Methods Mol Biol, 2019, 2037: 195-213. DOI: 10.1007/978-1-4939-9690-2_12
5
Zhang RZ, Zhou CW. Research progress on proton magnetic resonance spectroscopic imaging for monitoring response of neoadjuvant chemotherapy in breast cancer. Chin J Magn Reson Imaging, 2012, 3(2): 153-156. DOI: 10.3969/j.issn.1674-8034.2012.02.013
6
Jagannathan NR. Application of in vivo MR methods in the study of breast cancer metabolism. NMR Biomed, 2019, 32(10) :e4032. DOI: 10.1002/nbm.4032
7
Liu XY, Li L, Wang D, et al. Advances in functional magnetic resonance imaging and biological prognostic factors in breast cance. Progr Modern Biomed, 2018, 18(7): 1380-1383, 1333. DOI: 10.13241/j.cnki.pmb.2018.07.040
8
Paul A, Kumar S, Raj A, et al. Alteration in lipid composition differentiates breast cancer tissues: a 1H HRMAS NMR metabolomic study. Metabolomics, 2018, 14(9): 119. DOI: 10.1007/s11306-018-1411-3
9
Jagannathan NR, Singh M, Govindaraju V, et al. Volume localized in vivo proton MR spectroscopy of breast carcinoma: variation of water-fat ratio in patients receiving chemotherapy. NMR Biomed, 1998, 11(8): 414-422. DOI: 10.1002/(sici)1099-1492(199812)11:8<414::aid-nbm537>3.0.co;2-w
10
Thakur SB, Brennan SB, Ishill NM, et al. Diagnostic usefulness of water-to-fat ratio and choline concentration in malignant and benign breast lesions and normal breast parenchyma: an in vivo (1) H MRS study. J Magn Reson Imaging, 2011, 33(4): 855-863. DOI: 10.1002/jmri.22493
11
Thakur SB, Horvat JV, Hancu I, et al. Quantitative in vivo proton MR spectroscopic assessment of lipid metabolism: value for breast cancer diagnosis and prognosis. J Magn Reson Imaging, 2019, 50(1): 239-249. DOI: 10.1002/jmri.26622
12
Agarwal K, Sharma U, Mathur S, et al. Study of lipid metabolism by estimating the fat fraction in different breast tissues and in various breast tumor sub-types by in vivo 1H MR spectroscopy. Magn Reson Imaging, 2018, 49: 116-122. DOI: 10.1016/j.mri.2018.02.004
13
Sardanelli F, Carbonaro LA, Montemezzi S, et al. Clinical Breast MR Using MRS or DWI: Who Is the Winner? Front Oncol, 2016, 6: 217. DOI: 10.3389/fonc.2016.00217
14
Stanwell P, Gluch L, Clark D, et al. Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T. Eur Radiol, 2005, 15(5): 1037-1043. DOI: 10.1007/s00330-004-2475-1
15
Bilal Ahmadani MA, Bhatty S, Abideen ZU, et al. Imaging in breast cancer: use of magnetic resonance spectroscopy. Cureus, 2020, 12(8): e9734. DOI: 10.7759/cureus.9734
16
Kvistad KA, Bakken IJ, Gribbestad IS, et al. Characterization of neoplastic and normal human breast tissues with in vivo (1)H MR spectroscopy. J Magn Reson Imaging, 1999, 10(2): 159-164. DOI: 10.1002/(sici)1522-2586(199908)10:2<159::aid-jmri8>3.0.co;2-0
17
Sodano C, Clauser P, Dietzel M, et al. Clinical relevance of total choline (tCho) quantification in suspicious lesions on multiparametric breast MRI. Eur Radiol, 2020, 30(6): 3371-3382. DOI: 10.1007/s00330-020-06678-z
18
Wang X, Wang XJ, Song HS, et al. 1H-MRS evaluation of breast lesions by using total choline signal-to-noise ratio as an indicator of malignancy: a meta-analysis. Med Oncol, 2015, 32(5):160. DOI: 10.1007/s12032-015-0603-1
19
Sharma U, Agarwal K, Hari S, et al. Role of diffusion weighted imaging and magnetic resonance spectroscopy in breast cancer patients with indeterminate dynamic contrast enhanced magnetic resonance imaging findings. Magn Reson Imaging, 2019, 61: 66-72. DOI: 10.1016/j.mri.2019.05.032
20
Boulogianni G, Chryssogonidis I, Drevelegas A. Diffusion weighted MRI and spectroscopy in invasive carcinoma of the breast at 3 tesla. Correlation with dynamic contrast enhancement and pathologic findings. Hippokratia, 2016, 20(3): 192-197.
21
Aribal E, Asadov R, Ramazan A, et al. Multiparametric breast MRI with 3 T: effectivity of combination of contrast enhanced MRI, DWI and 1H single voxel spectroscopy in differentiation of breast tumors. Eur J Radiol, 2016, 85(5): 979-986. DOI: 10.1016/j.ejrad.2016.02.022
22
Galati F, Luciani ML, Caramanico C, et al. Breast magnetic resonance spectroscopy at 3 T in biopsy-proven breast cancers: does choline peak correlate with prognostic factors? Invest Radiol, 2019, 54(12): 767-773. DOI: 10.1097/RLI.0000000000000597
23
Cheung SM, Husain E, Masannat Y, et al. Lactate concentration in breast cancer using advanced magnetic resonance spectroscopy. Br J Cancer, 2020, 123(2): 261-267. DOI: 10.1038/s41416-020-0886-7
24
Bitencourt AG, Pinker K, Thakur S. Elevated glycine detected on in vivo magnetic resonance spectroscopy in a breast cancer patient: case report and literature review. BJR Case Rep, 2020, 6(1): 20190090. DOI: 10.1259/bjrcr.20190090
25
Seenu V, Pavan Kumar MN, Sharma U, et al. Potential of magnetic resonance spectroscopy to detect metastasis in axillary lymph nodes in breast cancer. Magn Reson Imaging, 2005, 23(10): 1005-1010. DOI: 10.1016/j.mri.2005.10.004
26
Korteweg MA, Veldhuis WB, Mali WP, et al. Investigation of lipid composition of dissected sentinel lymph nodes of breast cancer patients by 7T proton MR spectroscopy. J Magn Reson Imaging, 2012, 35(2): 387-392. DOI: 10.1002/jmri.22820
27
Bayoumi D, Zaky M, Ibrahim DA, et al. The additive role of 1H-magnetic resonance spectroscopic imaging to ensure pathological complete response after neoadjuvant chemotherapy in breast cancer patients. Pol J Radiol, 2019, 84: e570-e580. DOI: 10.5114/pjr.2019.92282
28
Leong KM, Lau P, Ramadan S. Utilisation of MR spectroscopy and diffusion weighted imaging in predicting and monitoring of breast cancer response to chemotherapy. J Med Imaging Radiat Oncol, 2015, 59(3):268-277. DOI: 10.1111/1754-9485.12310
29
Manton DJ, Chaturvedi A, Hubbard A, et al. Neoadjuvant chemotherapy in breast cancer: early response prediction with quantitative MR imaging and spectroscopy. Br J Cancer, 2006, 94(3):427-435. DOI: 10.1038/sj.bjc.6602948
30
Zhang R, Liu YL, Liu DH, et al. Research progress of functional magnetic resonance imaging techniques for evaluating the response to neoadjuvant chemotherapy in breast cancer. Chin J Magn Reson Imaging, 2019, 10(8): 620-624. DOI: 10.12015/issn.1674-8034.2019.08.013
31
Drisis S, Flamen P, Ignatiadis M, et al. Total choline quantification measured by 1H MR spectroscopy as early predictor of response after neoadjuvant treatment for locally advanced breast cancer: the impact of immunohistochemical status. J Magn Reson Imaging, 2018, 48(4): 982-993. DOI: 10.1002/jmri.26042
32
Cho N, Im SA, Kang KW, et al. Early prediction of response to neoadjuvant chemotherapy in breast cancer patients: comparison of single-voxel (1)H-magnetic resonance spectroscopy and (18)F-fluorodeoxyglucose positron emission tomography. Eur Radiol, 2016, 26(7):2279-2290. DOI: 10.1007/s00330-015-4014-7
33
Tong T, Lu H, Zong J, et al. Chemotherapy-related cognitive impairment in patients with breast cancer based on MRS and DTI analysis. Breast Cancer, 2020, 27(5): 893-902. DOI: 10.1007/s12282-020-01094-z
34
Kawai H, Naganawa S, Satake H, et al. ¹H-magnetic resonance spectroscopy of the breast at 3.0-T: comparison of results obtained before and after administration of gadolinium-based contrast agent. J Magn Reson Imaging, 2012, 35(3): 717-722. DOI: 10.1002/jmri.22893
35
Bolan PJ, Kim E, Herman BA, et al. MR spectroscopy of breast cancer for assessing early treatment response: results from the ACRIN 6657 MRS trial. J Magn Reson Imaging, 2017, 46(1): 290-302. DOI: 10.1002/jmri.25560

PREV Research progress of radiomics based on MRI in breast cancer
NEXT Research progresses in MRI in acute obstructive kidney injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn