Share:
Share this content in WeChat
X
REVIEW
Clinical application of blood oxygen level dependent magnetic resonance in cardiovascular diseases
SHI Ke  YANG Zhigang  GUO Yingkun  LI Yuan 

Cite this article as: Shi K, Yang ZG, Guo YK, et al. Clinical application of blood oxygen level dependent magnetic resonance in cardiovascular diseases[J]. Chin J Magn Reson Imaging, 2021, 12(2): 109-112. DOI:10.12015/issn.1674-8034.2021.02.027.


[Abstract] Traditional cardiac magnetic resonance imaging depends on exogenous contrast agents to evaluate myocardial blood supply and metabolism. Blood oxygen level dependent magnetic resonance is able to assess myocardial oxygenation by detecting the changes of deoxyhemoglobin, without the need of contrast agent. As a noninvasive functional imaging technology, it is promising in explaining the pathophysiological processes related to oxygen metabolism. This article aims to review the clinical application of this novel method in cardiovascular diseases in recent years.
[Keywords] functional magnetic resonance imaging;blood oxygen level dependent;cardiovascular disease

SHI Ke1   YANG Zhigang1   GUO Yingkun2   LI Yuan1*  

1 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China

2 Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China

Li Y, E-mail: dr.liyuan@163.com

Conflicts of interest   None.

ACKNOWLEDGENTS This work was part of National Natural Science Foundation of China (No. 81771897); the 1-3-5 Project for Disciplines of Excellence of West China Hospital, Sichuan University (No. ZYGD18013).
Received  2020-08-04
Accepted  2021-01-12
DOI: 10.12015/issn.1674-8034.2021.02.027
Cite this article as: Shi K, Yang ZG, Guo YK, et al. Clinical application of blood oxygen level dependent magnetic resonance in cardiovascular diseases[J]. Chin J Magn Reson Imaging, 2021, 12(2): 109-112. DOI:10.12015/issn.1674-8034.2021.02.027.

1
Sree Raman K, Nucifora G, Selvanayagam JB. Novel cardiovascular magnetic resonance oxygenation approaches in understanding pathophysiology of cardiac diseases[J]. Clin Exp Pharmacol Physiol, 2018, 45(5): 475-480. DOI: 10.1111/1440-1681.12916.
2
Smeeing DP, Hendrikse J, Petersen ET, et al. Arterial spin labeling and blood oxygen level-dependent MRI cerebrovascular reactivity in cerebrovascular disease: a systematic review and meta-analysis[J]. Cerebrovasc Dis, 2016, 42(3-4): 288-307. DOI: 10.1159/000446081.
3
Pak RW, Hadjiabadi DH, Senarathna J, et al. Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors[J]. J Cereb Blood Flow Metab, 2017, 37(11): 3475-3487. DOI: 10.1177/0271678X17707398.
4
Khalil AA, Ostwaldt AC, Nierhaus T, et al. Relationship between changes in the temporal dynamics of the blood-oxygen-level-dependent signal and hypoperfusion in acute ischemic stroke[J]. Stroke, 2017, 48(4): 925-931. DOI: 10.1161/STROKEAHA.116.015566.
5
White DA, Zhang Z, Li L, et al. Developing oxygen-enhanced magnetic resonance imaging as a prognostic biomarker of radiation response[J]. Cancer Lett, 2016, 380(1): 69-77. DOI: 10.1016/j.canlet.2016.06.003.
6
Christen T, Bolar DS, Zaharchuk G. Imaging brain oxygenation with MRI using blood oxygenation approaches: methods, validation, and clinical applications[J]. AJNR Am J Neuroradiol, 2013, 34(6): 1113-1123. DOI: 10.3174/ajnr.A3070.
7
Friedrich MG, Niendorf T, Schulz-Menger J, et al. Blood oxygen level-dependent magnetic resonance imaging in patients with stress-induced angina[J]. Circulation, 2003, 108(18): 2219-2223. DOI: 10.1161/01.CIR.0000095271.08248.EA.
8
Wacker CM, Hartlep AW, Pfleger S, et al. Susceptibility-sensitive magnetic resonance imaging detects human myocardium supplied by a stenotic coronary artery without a contrast agent[J]. J Am Coll Cardiol, 2003, 41(5): 834-840. DOI: 10.1016/s0735-1097(02)02931-5.
9
Manka R, Paetsch I, Schnackenburg B, et al. BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia[J]. J Cardiovasc Magn Reson, 2010, 12: 54. DOI: 10.1186/1532-429X-12-54.
10
Bernhardt P, Manzke R, Bornstedt A, et al. Blood oxygen level-dependent magnetic resonance imaging using T2-prepared steady-state free-precession imaging in comparison to contrast-enhanced myocardial perfusion imaging[J]. Int J Cardiol, 2011, 147(3): 416-419. DOI: 10.1016/j.ijcard.2009.09.547.
11
Karamitsos TD, Leccisotti L, Arnold JR, et al. Relationship between regional myocardial oxygenation and perfusion in patients with coronary artery disease: insights from cardiovascular magnetic resonance and positron emission tomography[J]. Circ Cardiovasc Imaging, 2010, 3(1): 32-40. DOI: 10.1161/CIRCIMAGING.109.860148.
12
Arnold JR, Karamitsos TD, Bhamra-Ariza P, et al. Myocardial oxygenation in coronary artery disease: insights from blood oxygen level-dependent magnetic resonance imaging at 3 tesla[J]. J Am Coll Cardiol, 2012, 59(22): 1954-1964. DOI: 10.1016/j.jacc.2012.01.055.
13
Walcher T, Manzke R, Hombach V, et al. Myocardial perfusion reserve assessed by T2-prepared steady-state free precession blood oxygen level-dependent magnetic resonance imaging in comparison to fractional flow reserve[J]. Circ Cardiovasc Imaging, 2012, 5(5): 580-586. DOI: 10.1161/CIRCIMAGING.111.971507.
14
Luu JM, Friedrich MG, Harker J, et al. Relationship of vasodilator-induced changes in myocardial oxygenation with the severity of coronary artery stenosis: a study using oxygenation-sensitive cardiovascular magnetic resonance[J]. Eur Heart J Cardiovasc Imaging, 2014, 15(12): 1358-1367. DOI: 10.1093/ehjci/jeu138.
15
Chen BH, Shi RY, An DA, et al. BOLD cardiac MRI for differentiating reversible and irreversible myocardial damage in ST segment elevation myocardial infarction[J]. Eur Radiol, 2019, 29(2): 951-962. DOI: 10.1007/s00330-018-5612-y.
16
Patel AR, Kramer CM. Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2017, 10(10Pt A): 1180-1193. DOI: 10.1016/j.jcmg.2017.08.005.
17
Karamitsos TD, Dass S, Suttie J, et al. Blunted myocardial oxygenation response during vasodilator stress in patients with hypertrophic cardiomyopathy[J]. J Am Coll Cardiol, 2013, 61(11): 1169-1176. DOI: 10.1016/j.jacc.2012.12.024.
18
Grover S, Lloyd R, Perry R, et al. Assessment of myocardial oxygenation, strain, and diastology in MYBPC3-related hypertrophic cardiomyopathy: a cardiovascular magnetic resonance and echocardiography study[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(8): 932-938. DOI: 10.1093/ehjci/jey220.
19
Ando K, Nagao M, Watanabe E, et al. Association between myocardial hypoxia and fibrosis in hypertrophic cardiomyopathy: analysis by T2* BOLD and T1 mapping MRI[J]. Eur Radiol, 2020, 30(8): 4327-4336. DOI: 10.1007/s00330-020-06779-9.
20
Dass S, Holloway CJ, Cochlin LE, et al. No evidence of myocardial oxygen deprivation in nonischemic heart failure[J]. Circ Heart Fail, 2015, 8(6): 1088-1093. DOI: 10.1161/CIRCHEARTFAILURE.114.002169.
21
Chen BH, Wu R, An DA, et al. Oxygenation-sensitive cardiovascular magnetic resonance in hypertensive heart disease with left ventricular myocardial hypertrophy and non-left ventricular myocardial hypertrophy: Insight from altered mechanics and cardiac BOLD imaging[J]. J Magn Reson Imaging, 2018, 48(5): 1297-1306. DOI: 10.1002/jmri.26055.
22
Nagao M, Yamasaki Y, Kawanami S, et al. Quantification of myocardial oxygenation in heart failure using blood-oxygen-level-dependent T2* magnetic resonance imaging: Comparison with cardiopulmonary exercise test[J]. Magn Reson Imaging, 2017, 39: 138-143. DOI: 10.1016/j.mri.2017.02.005.
23
Mahmod M, Francis JM, Pal N, et al. Myocardial perfusion and oxygenation are impaired during stress in severe aortic stenosis and correlate with impaired energetics and subclinical left ventricular dysfunction[J]. J Cardiovasc Magn Reson, 2014, 16: 29. DOI: 10.1186/1532-429X-16-29.
24
Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease[J]. Circ Res, 2020, 126(11): 1501-1525. DOI: 10.1161/CIRCRESAHA.120.315913.
25
Levelt E, Rodgers CT, Clarke WT, et al. Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus[J]. Eur Heart J, 2016, 37(46): 3461-3469. DOI: 10.1093/eurheartj/ehv442.
26
Schindler TH, Dilsizian V. Coronary microvascular dysfunction: clinical considerations and noninvasive diagnosis[J]. JACC Cardiovasc Imaging, 2020, 13(1Pt 1): 140-155. DOI: 10.1016/j.jcmg.2018.11.036.
27
Karamitsos TD, Arnold JR, Pegg TJ, et al. Patients with syndrome X have normal transmural myocardial perfusion and oxygenation: a 3-T cardiovascular magnetic resonance imaging study[J]. Circ Cardiovasc Imaging, 2012, 5(2): 194-200. DOI: 10.1161/CIRCIMAGING.111.969667.
28
Parnham S, Gleadle JM, Bangalore S, et al. Impaired myocardial oxygenation response to stress in patients with chronic kidney disease[J]. J Am Heart Assoc, 2015, 4(8): e002249. DOI: 10.1161/JAHA.115.002249.
29
Shah R, Parnham S, Liang Z, et al. Prognostic utility of oxygen-sensitive cardiac magnetic resonance imaging in diabetic and nondiabetic chronic kidney disease patients with no known coronary artery disease[J]. JACC Cardiovasc Imaging, 2019, 12(6): 1107-1109. DOI: 10.1016/j.jcmg.2018.12.014.
30
Fischer K, Guensch DP, Friedrich MG. Response of myocardial oxygenation to breathing manoeuvres and adenosine infusion[J]. Eur Heart J Cardiovasc Imaging, 2015, 16(4): 395-401. DOI: 10.1093/ehjci/jeu202.
31
Guensch DP, Fischer K, Flewitt JA, et al. Impact of intermittent apnea on myocardial tissue oxygenation-a study using oxygenation-sensitive cardiovascular magnetic resonance[J]. PLoS One, 2013, 8(1): e53282. DOI: 10.1371/journal.pone.0053282.
32
Guensch DP, Fischer K, Flewitt JA, et al. Breathing manoeuvre-dependent changes in myocardial oxygenation in healthy humans[J]. Eur Heart J Cardiovasc Imaging, 2014, 15(4): 409-414. DOI: 10.1093/ehjci/jet171.
33
Fischer K, Guensch DP, Shie N, et al. Breathing maneuvers as a vasoactive stimulus for detecting inducible myocardial ischemia-an experimental cardiovascular magnetic resonance study[J]. PLoS One, 2016, 11(10): e0164524. DOI: 10.1371/journal.pone.0164524.
34
Fischer K, Yamaji K, Luescher S, et al. Feasibility of cardiovascular magnetic resonance to detect oxygenation deficits in patients with multi-vessel coronary artery disease triggered by breathing maneuvers[J]. J Cardiovasc Magn Reson, 2018, 20(1): 31. DOI: 10.1186/s12968-018-0446-y.
35
Yang HJ, Oksuz I, Dey D, et al. Accurate needle-free assessment of myocardial oxygenation for ischemic heart disease in canines using magnetic resonance imaging[J]. Sci Transl Med, 2019, 11(494): eaat4407. DOI: 10.1126/scitranslmed.aat4407.

PREV Application progress of cardiac magnetic resonance in analysis of myocardial strain in hypertrophic cardiomyopathy
NEXT Research progress of quantitative MRI radiomics in multiple sclerosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn