Share:
Share this content in WeChat
X
REVIEW
Progress of artificial intelligence-based pathology in tumor diagnosis and treatment
TIAN Dawei  WANG Xiaochun  ZHANG Hui  TAN Yan 

Cite this article as: Tian DW, Wang XC, Zhang H, et al. Progress of artificial intelligence-based pathology in tumor diagnosis and treatment[J]. Chin J Magn Reson Imaging, 2021, 12(2): 117-120. DOI:10.12015/issn.1674-8034.2021.02.029.


[Abstract] Early detection and accurate diagnosis of tumors are crucial to the choice of treatment and the improvement of survival rate. As the gold standard of early diagnosis of tumor, pathology is a highly subjective, tedious, and non-repeatable process that histopathologists make a diagnosis by visually analyzing the tissue structure and cytopathic characteristics of the sample. With the development of artificial intelligence technology in recent years, especially radiomics can extract quantitative features from MRI images with high throughput, and convert images into high-dimensional and extractable data which show great advantages in tumor diagnosis, classification, prognosis. Quantitative analysis of pathological images based on artificial intelligence also has unique value in tumor diagnosis and treatment. It not only improves the accuracy and objectivity of tumor diagnosis, but also reduces the work of pathologists. Under certain circumstances, the ability to recognize slides exceeds that of professional pathologists. The combination of radiomics and pathological data is a new research trend. This paper reviews the application of artificial intelligence-based pathology in tumors, the role of pathology information in MRI and future prospects.
[Keywords] artificial intelligence;deep learning;pathology;magnetic resonance imaging;tumour

TIAN Dawei1   WANG Xiaochun2   ZHANG Hui2   TAN Yan2*  

1 Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan 030001, China

Tan Y, E-mail: tanyan123456@sina.com

Conflicts of interest   None.

ACKNOWLEDGENTS This work was part of National Natural Science Foundation of China (No.81701681).
Received  2020-06-27
Accepted  2020-08-21
DOI: 10.12015/issn.1674-8034.2021.02.029
Cite this article as: Tian DW, Wang XC, Zhang H, et al. Progress of artificial intelligence-based pathology in tumor diagnosis and treatment[J]. Chin J Magn Reson Imaging, 2021, 12(2): 117-120. DOI:10.12015/issn.1674-8034.2021.02.029.

1
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.
2
van den Bent MJ. Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician's perspective[J]. Acta Neuropathol, 2010, 120(3): 297-304. DOI: 10.1007/s00401-010-0725-7.
3
Elmore JG, Longton GM, Carney PA, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens[J]. JAMA, 2015, 313(11): 1122-1132. DOI: 10.1001/jama.2015.1405.
4
Raab SS, Grzybicki DM, Janosky JE, et al. Clinical impact and frequency of anatomic pathology errors in cancer diagnoses[J]. Cancer, 2005, 104(10): 2205-2213. DOI: 10.1002/cncr.21431.
5
Huang S, Yang J, Fong S, et al. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges[J]. Cancer Lett, 2020, 471: 61-71. DOI: 10.1016/j.canlet.2019.12.007.
6
Wang L, Ding L, Liu Z, et al. Automated identification of malignancy in whole-slide pathological images: identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning[J]. Br J Ophthalmol, 2020, 104(3): 318-323. DOI: 10.1136/bjophthalmol-2018-313706.
7
Iizuka O, Kanavati F, Kato K, et al. Deep learning models for histopathological classification of gastric and colonic epithelial tumours[J]. Sci Rep, 2020, 10(1): 1504. DOI: 10.1038/s41598-020-58467-9.
8
Ibrahim A, Gamble P, Jaroensri R, et al. Artificial intelligence in digital breast pathology: Techniques and applications[J]. Breast, 2020, 49: 267-273. DOI: 10.1016/j.breast.2019.12.007.
9
Litjens G, Sánchez CI, Timofeeva N, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis[J]. Sci Rep, 2016, 6: 26286. DOI: 10.1038/srep26286.
10
Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: Challenges and opportunities[J]. Med Image Anal, 2016, 33: 170-175. DOI: 10.1016/j.media.2016.06.037.
11
Jara-Lazaro AR, Thamboo TP, Teh M, et al. Digital pathology: exploring its applications in diagnostic surgical pathology practice[J]. Pathology, 2010, 42(6): 512-518. DOI: 10.3109/00313025.2010.508787.
12
Williams BJ, Bottoms D, Treanor D. Future-proofing pathology: the case for clinical adoption of digital pathology[J]. J Clin Pathol, 2017, 70(12): 1010-1018. DOI: 10.1136/jclinpath-2017-204644.
13
Turkki R, Byckhov D, Lundin M, et al. Breast cancer outcome prediction with tumour tissue images and machine learning[J]. Breast Cancer Res Treat, 2019, 177(1): 41-52. DOI: 10.1007/s10549-019-05281-1.
14
Miyoshi H, Sato K, Kabeya Y, et al. Deep learning shows the capability of high-level computer-aided diagnosis in malignant lymphoma[J]. Lab Invest, 2020, DOI: . DOI: 10.1038/s41374-020-0442-3.
15
Deniz E, Şengür A, Kadiroğlu Z, et al. Transfer learning based histopathologic image classification for breast cancer detection[J]. Health Inf Sci Syst, 2018, 6(1): 18. DOI: 10.1007/s13755-018-0057-x.
16
Liao H, Xiong T, Peng J, et al. Classification and prognosis prediction from histopathological images of hepatocellular carcinoma by a fully automated pipeline based on machine learning[J]. Ann Surg Oncol, 2020, 27(7): 2359-2369. DOI: 10.1245/s10434-019-08190-1.
17
Sun C, Xu A, Liu D, et al. Deep learning-based classification of liver cancer histopathology images using only global labels[J]. IEEE J Biomed Health Inform, 2020, 24(6): 1643-1651. DOI: 10.1109/JBHI.2019.2949837.
18
Tabibu S, Vinod PK, Jawahar CV. Pan-renal cell carcinoma classification and survival prediction from histopathology images using deep learning[J]. Sci Rep, 2019, 9(1): 10509. DOI: 10.1038/s41598-019-46718-3.
19
Han Z, Wei B, Zheng Y, et al. Breast cancer multi-classification from histopathological images with structured deep learning model[J]. Sci Rep, 2017, 7(1): 4172. DOI: 10.1038/s41598-017-04075-z.
20
Syrykh C, Abreu A, Amara N, et al. Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning[J]. NPJ Digit Med, 2020, 3: 63. DOI: 10.1038/s41746-020-0272-0.
21
Hekler A, Utikal JS, Enk AH, et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images[J]. Eur J Cancer, 2019, 118: 91-96. DOI: 10.1016/j.ejca.2019.06.012.
22
Rathore S, Niazi T, Iftikhar MA, et al. Glioma grading via analysis of digital pathology images using machine learning[J]. Cancers (Basel), 2020, 12(3): 578. DOI: 10.3390/cancers12030578.
23
Lucas M, Jansen I, Savci-Heijink CD, et al. Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies[J]. Virchows Arch, 2019, 475(1): 77-83. DOI: 10.1007/s00428-019-02577-x.
24
Poojitha UP, Lal Sharma S. Hybrid unified deep learning network for highly precise gleason grading of prostate cancer[J]. Conf Proc IEEE Eng Med Biol Soc, 2019, 2019: 899-903. DOI: 10.1109/EMBC.2019.8856912.
25
Khoshdeli M, Borowsky A, Parvin B. Deep learning models differentiate tumor grades from H&E stained histology sections[J]. Conf Proc IEEE Eng Med Biol Soc, 2018, 2018: 620-623. DOI: 10.1109/EMBC.2018.8512357.
26
Courtiol P, Maussion C, Moarii M, et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome[J]. Nat Med, 2019, 25(10): 1519-1525. DOI: 10.1038/s41591-019-0583-3.
27
Kather JN, Krisam J, Charoentong P, et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study[J]. PLoS Med, 2019, 16(1): e1002730. DOI: 10.1371/journal.pmed.1002730.
28
Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images[J]. Nat Med, 2019, 25(8): 1301-1309. DOI: 10.1038/s41591-019-0508-1.
29
Zadeh Shirazi A, Fornaciari E, Bagherian NS, et al. DeepSurvNet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images[J]. Med Biol Eng Comput, 2020, 58(5): 1031-1045. DOI: 10.1007/s11517-020-02147-3.
30
Yu KH, Zhang C, Berry GJ, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features[J]. Nat Commun, 2016, 7: 12474. DOI: 10.1038/ncomms12474.
31
Skrede OJ, De Raedt S, Kleppe A, et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study[J]. Lancet, 2020, 395(10221): 350-360. DOI: 10.1016/S0140-6736(19)32998-8.
32
Liu K, Xia W, Qiang M, et al. Deep learning pathological microscopic features in endemic nasopharyngeal cancer: Prognostic value and protentional role for individual induction chemotherapy[J]. Cancer Med, 2020, 9(4): 1298-1306. DOI: 10.1002/cam4.2802.
33
Li X, Tang Q, Yu J, et al. Microvascularity detection and quantification in glioma: a novel deep-learning-based framework[J]. Lab Invest, 2019, 99(10): 1515-1526. DOI: 10.1038/s41374-019-0272-3.
34
Zhao L, Ma X, Liang M, et al. Prediction for early recurrence of intrahepatic mass-forming cholangiocarcinoma: quantitative magnetic resonance imaging combined with prognostic immunohistochemical markers[J]. Cancer Imaging, 2019, 19(1): 49. DOI: 10.1186/s40644-019-0234-4.
35
Cui Y, Yang X, Shi Z, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Eur Radiol, 2019, 29(3): 1211-1220. DOI: 10.1007/s00330-018-5683-9.
36
Tang X, Xu X, Han Z, et al. Elaboration of a multimodal MRI-based radiomics signature for the preoperative prediction of the histological subtype in patients with non-small-cell lung cancer[J]. Biomed Eng Online, 2020, 19(1): 5. DOI: 10.1186/s12938-019-0744-0.
37
Wu Q, Wang S, Zhang S, et al. Development of a deep learning model to identify lymph node metastasis on magnetic resonance imaging in patients with cervical cancer[J]. JAMA Netw Open, 2020, 3(7): e2011625. DOI: 10.1001/jamanetworkopen.2020.11625.

PREV Research progress of quantitative MRI radiomics in multiple sclerosis
NEXT The principle of pH imaging with MR and its research progress on the formation mechanism and development of tumor acidic microenvironment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn