Share:
Share this content in WeChat
X
REVIEW
The principle of pH imaging with MR and its research progress on the formation mechanism and development of tumor acidic microenvironment
JIANG Weiqi  JIANG Meng  A Rong  SUN Xilin 

Cite this article as: Jiang WQ, Jiang M, A R, et al. The principle of pH imaging with MR and its research progress on the formation mechanism and development of tumor acidic microenvironment[J]. Chin J Magn Reson Imaging, 2021, 12(2): 121-124. DOI:10.12015/issn.1674-8034.2021.02.030.


[Abstract] Tumor tissues have unique pathophysiological characteristics, among which, the pH dysregulation becomes an important feature of the tumor microenvironment. Meanwhile, the acidic microenvironment of tumor plays a key role in malignant biological behaviors such as tumor development, invasion and metastasis. Therefore, it is of great significance to detect the pH of tumor extracellular environment for the early diagnosis of tumor, evaluating the occurrence and development of tumor and to monitor the clinical application of anticancer drugs. MRI can achieve non-invasive, in vivo, dynamic, real-time and quantitative characteristics in the imaging detection of tumor acidic microenvironment. It has the potential of diagnosing tumor earlier, guiding individual treatment as well as monitoring the curative effect of tumor treatment. This review based on the formation mechanism and pathophysiological significance of tumor acidic microenvironment, then summarizes the existing pH imaging with MR techniques and methods. In order to provide theoretical basis and data supporting for developing novel magnetic resonance pH imaging technology, thus promoting its clinical transformation and application.
[Keywords] magnetic resonance imaging;tumor acidic microenvironment;pH imaging;13C;19F;1H nuclear magnetic resonance spectroscopy

JIANG Weiqi   JIANG Meng   A Rong   SUN Xilin*  

Department of TOF-PET/CT/MR Center, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150028, China

Sun XL, E-mail: sunxl@ems.hrbmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGENTS This work was part of National Nature Science Foundation of China (No. 81627901); National Basic Research Program of China (No. 2015CB931800).
Received  2020-07-20
Accepted  2020-08-21
DOI: 10.12015/issn.1674-8034.2021.02.030
Cite this article as: Jiang WQ, Jiang M, A R, et al. The principle of pH imaging with MR and its research progress on the formation mechanism and development of tumor acidic microenvironment[J]. Chin J Magn Reson Imaging, 2021, 12(2): 121-124. DOI:10.12015/issn.1674-8034.2021.02.030.

1
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA: A Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21601.
2
Pan R, Zhu M, Yu C, et al. Cancer incidence and mortality: A cohort study in China, 2008-2013[J]. Inter J Cancer, 2017, 141(7): 1315-1323. DOI: 10.1002/ijc.30825.
3
Horsman MR, Vaupel P. Pathophysiological basis for the formation of the tumor microenvironment[J]. Frontiers in Oncology, 2016, 6: 65-66. DOI: 10.3389/fonc.2016.00066.
4
Sun L, Suo C, Li S, al et: Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect[J]. Biochimica et Biophysica Acta, 2018, 1870 (1): 51-66. DOI: 10.1016/j.bbcan.2018.06.005.
5
Granja S, Tavaresvalente D, Queiros O, et al. Value of pH regulators in the diagnosis, prognosis and treatment of cancer[J]. Seminars in Cancer Biology, 2017, 43: 17-34. DOI: 10.1016/j.semcancer.2016.12.003.
6
Collins MP, Forgac M. Regulation of V-ATPase assembly in nutrient sensing and function of V-ATPases in breast cancer metastasis[J]. Frontiers in Physiology, 2018, 9: 902. DOI: 10.3389/fphys.2018.00902.
7
Harguindey S, Orozco JDP, Alfarouk KO, et al. Hydrogen ion dynamics of cancer and a new molecular, biochemical and metabolic approach to the etiopathogenesis and treatment of brain malignancies[J]. Inter J Molecular Sci, 2019, 20(17): 4278. DOI: 10.3390/ijms20174278.
8
Sun Y, Sun J, He Z, et al. Monocarboxylate transporter 1 in brain diseases and cancers[J]. Current Drug Metabolism, 2019, 20(11): 855-866. DOI: 10.2174/1389200220666191021103018.
9
Reza AM, Jaleh B, Pourseif MM, et al. Molecular machineries of pH dysregulation in tumor microenvironment: potential targets for cancer therapy[J]. Bioimpacts Bi, 2017, 7(2): 115-133. DOI: 10.15171/bi.2017.15.
10
Bohme I, Bosserhoff A. Acidic tumor microenvironment in human melanoma[J]. Pigment Cell & Melanoma Research, 2016, 29(5): 508-523. DOI: 10.1111/pcmr.12495.
11
Rofstad EK, Mathiesen B, Kindem K, et al. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice[J]. Cancer Res, 2006, 66(13): 6699-6707. DOI: 10.1158/0008-5472.CAN-06-0983.
12
Fouad AM. A kinetic view of acid-mediated tumor invasion[J]. Eur Biophysics J, 2018, 47(2): 185-189. DOI: 10.1007/s00249-018-1275-5.
13
Liu J, Luo Z, Zhang J, et al. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy[J]. Biomaterials, 2016, 83: 51-65. DOI: 10.1016/j.biomaterials.2016.01.008.
14
Wang J, Xia S, Bi J, et al. Ratiometric near-infrared fluorescent probes based on through-bond energy transfer and π-conjugation modulation between tetraphenylethene and hemicyanine moieties for sensitive detection of pH changes in live cells[J]. Bioconjug Chem, 2018, 29(4): 1406-1418. DOI: 10.1021/acs.bioconjchem.8b00111.
15
Hnilicova P, Richterova R, Zelenak K, et al. Noninvasive study of brain tumours metabolism using phosphorus-31 magnetic resonance spectroscopy[J]. Bratisl Lek Listy, 2020, 121(7): 488-492. DOI: 10.4149/BLL_2020_080.
16
Layec G, Gifford JR, Trinity JD, et al. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function[J]. Am J Physiology-Endocrinology and Metabolism, 2016, 311(2): E358-366. DOI: 10.1152/ajpendo.00028.2016.
17
Gauberti M, Fournier AP, Vivien D, et al. Molecular magnetic resonance imaging (mMRI)[J]. Methods of Molecular Biology, 2018, 1718: 315-327. DOI: 10.1007/978-1-4939-7531-0_27.
18
Flori A, Giovannetti G, Santarelli MF, et al. Biomolecular imaging of 13C-butyrate with dissolution-DNP: Polarization enhancement and formulation for in vivo studies[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 199: 153-160. DOI: 10.1016/j.saa.2018.03.014.
19
Lizarbe B, Lei H, Duarte JMN, et al. Feasibility of in vivo measurement of glucose metabolism in the mouse hypothalamus by 1 H-[13C] MRS at 14.1 T[J]. Magn Reson in Med, 2018, 80(3): 874-884. DOI: 10.1002/mrm.27129.
20
Gallagher FA, Kettunen MI, Brindle KM. Imaging pH with hyperpolarized 13C. NMR in Biomedicine[J], 2011, 24(8): 1006-1015. DOI: 10.1002/nbm.1742.
21
Hundshammer C, Duwel S, Kocher SS, et al. Deuteration of hyperpolarized 13C-labeled zymonic acid enables sensitivity-enhanced dynamic MRI of pH[J]. Chem Phys, 2017, 18(18): 2422-2425. DOI: 10.1002/cphc.201700779.
22
Korenchan DE, Gordon JW, Subramaniam S, et al. Using bidirectional chemical exchange for improved hyperpolarized [13C]bicarbonate pH imaging[J]. Magn Reson in Med, 2019, 82(3): 959-972. DOI: 10.1002/mrm.27780.
23
Duwel S, Hundshammer C, Gersch M, et al. Imaging of pH in vivo using hyperpolarized 13C-labelled zymonic acid[J]. Nature Communicat, 2017, 8(1): 15126-15126. DOI: 10.1038/ncomms15126.
24
Mason RP. Transmembrane pH gradients in vivo: Measurements using fluorinated vitamin B6 derivatives[J]. Current Med Chemistry, 1999, 6(6): 481-499. DOI: 10.1021/tx980250h.
25
Guo C, Xu S, Arshad A, et al. A pH-responsive nanoprobe for turn-on 19F-magnetic resonance imaging[J]. Chemical Communications, 2018, 54(70): 9853-9856. DOI: 10.1039/C8CC06129G.
26
Srivastava K, Ferrauto G, Young VG, et al. Eight-coordinate, stable Fe(II) complex as a dual 19F and CEST contrast agent for ratiometric pH imaging[J]. Inorganic Chemistry, 2017, 56(20): 12206-12213. DOI: 10.1021/acs.inorgchem.7b01629.
27
Huang X, Huang G, Zhang S, et al. Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes[J]. Angewandte Chemie, 2013, 52(31): 8074- 8078. DOI: 10.1002/ange.201301135.
28
Chen SZ, Yuan J, Deng M, et al. Chemical exchange saturation transfer (CEST) MR technique for in-vivo liver imaging at 3.0 tesla[J]. Eur Radiol, 2016, 26(6): 1792-1800. DOI: 10.1007/s00330-015-3972-0.
29
Wolff SD, Balaban RS. NMR imaging of labile proton exchange[J]. J Magn Reson, 1990, 86(1): 164-169. DOI: 10.1016/0022-2364(90)90220-4.
30
Liu G, Li Y, Sheth VR, et al. Imaging in vivo extracellular pH with a single paramagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent[J]. Molecular Imaging, 2012, 11(1): 47-57. DOI: 10.2310/7290.2011.00026.
31
Zu Z, Afzal A, Li H, et al. Spin-lock imaging of early tissue pH changes in ischemic rat brain[J]. NMR in Biomedicine, 2018, 31(4): e3893. DOI: 10.1002/nbm.3893.
32
Wang R, Wang C, Dai Z, et al. In vivo an amyloid-β targeting chemical exchange saturation transfer probe for detection of Alzheimer's disease[J]. ACS Chem Neurosci, 2019, 10(8): 3859-3867. DOI: 10.1021/acschemneuro.9b00334.
33
Longo DL, Sun PZ, Consolino L, et al. A general MRI-CEST ratiometric approach for pH imaging: demonstration of in vivo pH mapping with iobitridol[J]. J Am Chemical Soc, 2014, 136(41): 14333-14336. DOI: 10.1021/ja5059313.
34
Arena F, Irrera P, Consolino L, et al. Flip-angle based ratiometric approach for pulsed CEST-MRI pH imaging[J]. J Magn Reson, 2018, 287(2): 1-9. DOI: 10.1016/j.jmr.2017.12.007.
35
Zhang S, Wu K, Sherry AD. A novel pH sensitive MRI contrast agent[J]. Angewandte Chemie, 1999, 38(21): 3192-3194. DOI: 10.1002/(SICI)1521-3773(19991102)38:21<3192:AID-ANIE3192>3.0.CO.
36
Garcia-Martin ML, Martinez GV, Raghunand N, et al. High resolution pHe imaging of rat glioma using pH-dependent relaxivity[J]. Magn Reson in Med, 2006, 55(2): 309-315. DOI: 10.1002/mrm.20773.
37
Kang EB, Lee GB, In I, et al. pH-sensitive fluorescent hyaluronic acid nanogels for tumor-targeting and controlled delivery of doxorubicin and nitric oxide[J]. Eur Polymer J, 2018, 101: 96-104. DOI: 10.1016/j.eurpolymj.2018.02.016.
38
Mi P, Kokuryo D, Cabral H, et al. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy[J]. Nature Nanotechnology, 2016, 11(8): 724-730. DOI: 10.1038/nnano.2016.72.

PREV Progress of artificial intelligence-based pathology in tumor diagnosis and treatment
NEXT Clinical and MRI analysis of hepatic and cerebral hepatolenticular degeneration
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn