Share:
Share this content in WeChat
X
Clinical Article
The value of minimum apparent diffusion coefficient value in differential diagnosis of giant cell glioblastoma and glioblastoma
ZHANG Bin  XUE Caiqiang  LIN Xiaoqiang  JING Mengyuan  DENG Liangna  HAN Tao  ZHOU Junlin 

Cite this article as: Zhang B, Xue CQ, Lin XQ, et al. The value of minimum apparent diffusion coefficient value in differential diagnosis of giant cell glioblastoma and glioblastoma[J]. Chin J Magn Reson Imaging, 2021, 12(3): 20-23, 43. DOI:10.12015/issn.1674-8034.2021.03.005.


[Abstract] Objective To explore the value of minimum apparent diffusion coefficient (ADCmin) value in the differential diagnosis of intracranial glioblastoma and giant cell glioblastoma. Materials andMethods MRI data of 11 cases of giant cell glioblastoma and 19 cases of classical glioblastoma confirmed by surgery and pathology were retrospectively analyzed. All patients underwent MR plain scan, enhancement and DWI before surgery. The ADCmin value of the tumor parenchyma was measured, and the difference between the two was compared, and the diagnostic efficacy was analyzed by ROC curve.Results The ADCmin value of giant cell glioblastoma was (0.989±0.104)×10-3 mm2/s, and the ADCmin value of glioblastoma was (0.837±0.111)×10-3 mm2/s. The difference was statistically significant (t=3.671, P=0.001). The ROC curve showed that the AUC was 0.852 (P=0.002). Taken ADCmin value=0.880×10-3 mm2/s as the threshold, the sensitivity was 90.9%, and the specificity was 68.4%.Conclusions ADCmin value has high clinical application value in differential diagnosis of giant cell glioblastoma and classical glioblastoma, and can be used as an effective supplement for routine MR examination.
[Keywords] diffusion magnetic resonance imaging;apparent diffusion coefficient;giant cell glioblastoma;glioblastoma;differential diagnosis

ZHANG Bin   XUE Caiqiang   LIN Xiaoqiang   JING Mengyuan   DENG Liangna   HAN Tao   ZHOU Junlin*  

Department of Radiology, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University, Lanzhou 730030, China

Zhou JL, E-mail: lzuzjl601@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Natural Science Foundation of China No. 81772006 Lanzhou University Second Hospital "Cuiying Technology Innovation Plan" Applied Basic Research Project No. CY2017-MS03
Received  2020-11-04
Accepted  2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.005
Cite this article as: Zhang B, Xue CQ, Lin XQ, et al. The value of minimum apparent diffusion coefficient value in differential diagnosis of giant cell glioblastoma and glioblastoma[J]. Chin J Magn Reson Imaging, 2021, 12(3): 20-23, 43. DOI:10.12015/issn.1674-8034.2021.03.005.

1
Bai J, Cheng JL, Gao AK, et al. 2016 WHO classification and interpretation of central nervous system Tumors. Chin J Radiol, 2016, 50(12): 1000-1005. DOI: 10.3760/cma.j.issn.1005-1201.2016.12.025
2
Henning L, Petter B, Elisabeth JR, et al. IDH-mutant giant cell glioblastoma: a neglected tumor variant?Clin Neuropathol, 2017, 36(6): 293-295. DOI: 10.5414/NP301054
3
Maryam S, Donatello T, Masoud M, et al. Incidence, survival, pathology, and genetics of adult Latino Americans with glioblastoma. J Neurooncol, 2017, 132(2): 351-358. DOI: 10.1007/s11060-017-2377-0
4
Komori T. The 2016 WHO classification of tumours of the central nervous system: the major points of revision. Neurol Med Chir (Tokyo), 2017, 57(7): 301-311. DOI: 10.2176/nmc.ra.2017-0010
5
Ji EO, Takashi O, Naosuke N, et al. Genetic Alterations in Gliosarcoma and Giant Cell Glioblastoma. Brain Pathol (Zurich, Switzerland), 2016, 26(4): 517-22. DOI: 10.1111/bpa.12328
6
Jin MC,Wu A, Xiang M, et al. Prognostic factors and treatment patterns in the management of giant cell glioblastoma. World Neurosurg, 2019, 128: e217-e224. DOI: 10.1016/j.wneu.2019.04.103
7
Taemin O, Martin JR, Michael S, et al. Survival outcomes of giant cell glioblastoma: institutional experience in the management of 20 patients. J Clin Neurosci, 2014, 21(12): 2129-2134. DOI: 10.1016/j.jocn.2014.04.011
8
Kaoru O, Akira K, Akihisa K, et al. Giant cell glioblastoma is a distinctive subtype of glioma characterized by vulnerability to DNA damage. Brain Tumor Pathol, 2020, 37(1): 5-13. DOI: 10.1007/s10014-019-00355-w
9
Takuichiro H, Ichiyo S, Toshihiro K. Novel concept of the border niche: glioblastoma cells use oligodendrocytes progenitor cells (GAOs) and microglia to acquire stem cell-like features. Brain Tumor Pathol, 2019, 36(2): 63-73. DOI: 10.1007/s10014-019-00341-2
10
Zhang LY, Zhang PL, Zhang XL, et al. Comparison of MRI signs with pathological findings in giant cell glioblastoma: a report of 9 cases. Chin J Magn Reson Imaging, 2016, 7(12): 932-936. DOI: 10.12015/issn.1674-8034.2016.12.008
11
Ji EO, Takashi O, Naosuke N, et al. Genetic alterations in gliosarcoma and giant cell glioblastoma. Brain pathol (Zurich, Switzerland), 2016, 26(4): 517-22. DOI: 10.1111/bpa.12328
12
Sushila J, Mukul V, Awadhesh KJ, et al. Cytomorphology of giant cell glioblastoma: Report of a case and brief review of literature. Diagn Cytopathol, 2012, 40(5): 440-443. DOI: 10.1002/dc.21648
13
Amro KB, Khalid AB, Yousef RB, et al. Association between giant cell glioblastoma and glioblastoma multiforme in the United States: a retrospective cohort study. Brain Behav, 2019, 9(10): e01402. DOI: 10.1002/brb3.1402
14
Shi ZF, Li KK, Johnny SH, et al. Whole-exome sequencing revealed mutational profiles of giant cell glioblastomas. Brain Pathol (Zurich, Switzerland), 2019, 29(6): 782-792. DOI: 10.1111/bpa.12720
15
Lv CL, Lei JY, Zhang Y, et al. Giant cell glioblastoma imaging findings and pathologic correlation. J Pract Radiol, 2017, 33(4): 497-499, 521. DOI: 10.3969/j.issn.1002-1671.2017.04.002
16
Yamasaki F, Kurisu K, Satoh K, et al. Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology, 2005, 235(3): 985-91. DOI: 10.1148/radiol.2353031338
17
Han L, Ke XA, Zhou Q, et al. The value of DWI and minimum ADC value in grading diagnosis of adult intracranial ependymoma. Chin J Magn Reson Imaging, 2019, 10(7): 481-485. DOI: 10.12015/issn.1674-8034.2019.07.001
18
Ke XA, Zhou Q, Han L, et al. Differentiating microcystic meningioma from atypical meningioma using diffusion-weighted imaging. Neuroradiology, 2020, 62(5): 601-607. DOI: 10.1007/s00234-020-02374-3
19
Yao R, Cheng A, Liu ML, et al. The diagnostic value of apparent diffusion coefficient and proton magnetic resonance spectroscopy in the grading of pediatric gliomas. Comput Assist Tomogr, 2020. DOI: . DOI: 10.1097/RCT.0000000000001130
20
Pierce TT, Provenzale JM. Evaluation of apparent diffusion coefficient thresholds for diagnosis of medulloblastoma using diffusion-weighted imaging. Neuroradiol J, 2014 DOI: ;27(1):63-74. DOI: 10.15274/NRJ-2014-10007
21
Ryan T, Samuel M, John H, et al. Imaging findings in the progression of a giant cell glioblastoma. Radiol Case Rep, 2018, 13(5): 1007-1011. DOI: 10.1016/j.radcr.2018.07.010
22
Yan XL. Giant cell glioblastoma. Chin J Contemp Neurol Neurosurg, 2018, 18(6): 384. DOI: 10.3969/j.issn.1672-6731.2018.06.015

PREV DTI quantitative evaluation of brain microstructural changes after melodic intonation therapy in the treatment of Broca aphasia
NEXT Clinical and imaging characteristics of cryptococcal intracranial infection in patients with acquired immune deficiency syndrome
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn