Share:
Share this content in WeChat
X
Technical Article
The value of diffusion-weighted imaging of single index, double index and stretch index models in the differential diagnosis of orbital benign and malignant tumors
WANG Shang  BAI Yan  WANG Meiyun  CHEN Chuanliang 

Cite this article as: Wang S, Bai Y, Wang MY, et al. The value of diffusion-weighted imaging of single index, double index and stretch index models in the differential diagnosis of orbital benign and malignant tumors[J]. Chin J Magn Reson Imaging, 2021, 12(3): 44-48. DOI:10.12015/issn.1674-8034.2021.03.010.


[Abstract] Objective To explore the value of single index, double index and stretch index model DWI in the differentiation of orbital benign and malignant tumors. Materials andMethods Fifty-one patients with orbital tumors confirmed by surgery and pathology from January 2019 to December 2019 were enrolled. They underwent 3.0 T conventional magnetic resonance and multi-b value DWI examination before surgery. Among them, 26 were benign and 25 were malignant. Use GE ADW4.6 Functiontool post-processing software to measure the apparent diffusion coefficient (ADC) value of the single exponential model, the slow apparent diffusion coefficient (ADCslow) value, the fast apparent diffusion coefficient (ADCfast), perfusion fraction (f) value of the double exponential model, and the distributed diffusion coefficient (DDC) value、the heterogeneity of intravoxel diffusion (α) value of stretch index model, compare the difference of each parameter value. Receiver operating characteristic curve (ROC) was used to evaluate the effectiveness of statistically different parameters in the differential diagnosis of orbital benign and malignant.Results ADC, ADCslow, DDC and α values were significantly different in the differential diagnosis of benign tumors and malignant tumors (P<0.05). Among them, the area under the receiver operating characteristic curve of DDC and ADCslow was the largest, respectively 0.84 and 0.81, the diagnostic threshold was 1.15×10-3 mm2/s (sensitivity, 79.20%; specificity, 92.60%) and 0.60×10-3 mm2/s (sensitivity 87.50%; specificity 66.70%).Conclusions Diffusion weighted imaging with double index and stretch index models provides more information for the differential diagnosis of orbital tumors from benign and malignant. Compared with the ADC value generated by traditional single index DWI, ADCslow and DDC have greater advantages in the differential diagnosis of benign and malignant orbital tumors. The combination of ADCslow, DDC, and α has the highest diagnostic efficiency.
[Keywords] orbital tumors;magnetic resonance imaging;diffusion weighted imaging;differential diagnosis;single index;double index;stretch index

WANG Shang   BAI Yan   WANG Meiyun   CHEN Chuanliang*  

Department of Medical Imaging, the People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China

Chen CL, E-mail: henanccl@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  Supported by the National Key Research and Development Program of China No. 2017YFE0103600 National Natural Science Foundation of China No. 81601466
Received  2020-09-03
Accepted  2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.010
Cite this article as: Wang S, Bai Y, Wang MY, et al. The value of diffusion-weighted imaging of single index, double index and stretch index models in the differential diagnosis of orbital benign and malignant tumors[J]. Chin J Magn Reson Imaging, 2021, 12(3): 44-48. DOI:10.12015/issn.1674-8034.2021.03.010.

1
Sepahdari AR, Aakalu VK, Setabutr P, et al. Indeterminate orbital masses: restricted diffusion at MR imaging with echo-planar diffusion-weighted imaging predicts malignancy. Radiology, 2010, 256(2): 554-564. DOI: 10.1148/radiol.10091956
2
Philips R, Topf MC, Graf A, et al. Orbital outcomes after orbit-sparing surgery and free flap reconstruction. Oral Oncol, 2019, 98: 78-84. DOI: 10.1016/j.oraloncology.2019.09.023
3
Sumi M, Nakamura T. Head and neck tumours: combined MRI assessment based on IVIM and TIC analyses for the differentiation of tumors of different histological types. Eur Radiol, 2014, 24(1): 223-231. DOI: 10.1007/s00330-013-3002-z
4
Qi LP, Yan WP, Chen KN, et al. Discrimination of malignant versus benign mediastinal lymph nodes using diffusion MRI with an IVIM model. Eur Radiol, 2018, 28(3): 1301-1309. DOI: 10.1007/s00330-017-5049-8
5
Zhang XL, WU G, Xie RY, et al. The value of MRI intravoxel incoherent motion imaging (IVIM) and diffusion kurtosis imaging (DKI) in the differential diagnosis of benign and malignant bone and soft tissue tumors of lower extremity. Chin J Magn Reson Imaging, 2018, 9(7): 525-532. DOI: 10.12015/issn.1674-8034.2018.07.008
6
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909
7
Bennett KM, Schmainda KM, Bennett RT, et al. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med, 2003, 50(4): 727-734. DOI: 10.1002/mrm.10581
8
Chevallier O, Zhou N, Cercueil JP, et al. Comparison of tri‐exponential decay versus bi‐exponential decay and full fitting versus segmented fitting for modeling liver intravoxel incoherent motion diffusion MRI. NMR Biomed, 2019, 32(11): e4155. DOI: 10.1002/nbm.4155
9
Ebrahimi B, Saad A, Jiang K, et al. Renal adiposity confounds quantitative assessment of markers of renal diffusion with MRI: a proposed correction method. Invest Radiol, 2017, 52(11): 672-679. DOI: 10.1097/RLI.0000000000000389
10
Federau C, Wintermark M, Christensen S, et al. Collateral blood flow measurement with intravoxel incoherent motion perfusion imaging in hyperacute brain stroke. Neurology, 2019, 92(21): e2462-e2471. DOI: 10.1212/WNL.0000000000007538
11
Iima M, Kataoka M, Kanao S, et al. Intravoxel incoherent motion and quantitative non-gaussian diffusion MR imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions. Radiology, 2018, 287(2): 432-441. DOI: 10.1148/radiol.2017162853
12
Kang KM, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology, 2014, 270(2): 444-453. DOI: 10.1148/radiol.13122712
13
Xu XQ, Hu H, Su GY, et al. Orbital indeterminate lesions in adults: combined magnetic resonance morphometry and histogram analysis of apparent diffusion coefficient maps for predicting malignancy. Acad Radiol, 2016, 23(2): 200-208. DOI: 10.1016/j.acra.2015.10.015
14
Han Z, Liu AL, Liu ZQ, et al. Multiple exponential models of diffusion weighted imaging in differentiating hepatocellular carcinoma from hepatic hemangioma. Chin J Magn Reson Imaging, 2017, 8(7): 519-525. DOI: 10.12015/issn.1674-8034.2017.07.008
15
Bai Y, Lin Y, Tian J, et al. Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging. Radiology, 2016, 278(2): 496-504. DOI: 10.1148/radiol.2015142173
16
Zhang J, Suo S, Liu G, et al. Comparison of monoexponential, biexponential, stretched-exponential, and kurtosis models of diffusion-weighted Imaging in differentiation of renal solid masses. Korean J Radiol, 2019, 20(5): 791-800. DOI: 10.3348/kjr.2018.0474
17
Liang L, Luo X, Lian Z, et al. Lymph node metastasis in head and neck squamous carcinoma: efficacy of intravoxel incoherent motion magnetic resonance imaging for the differential diagnosis. Eur J Radiol, 2017, 90: 159-165. DOI: 10.1016/j.ejrad.2017.02.039
18
Guiu B, Petit JM, Capitan V, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0 T MR study. Radiology, 2012, 1(1): 96-103. DOI: 10.1148/radiol.12112478
19
Lewin M, Fartoux L, Vignaud A, et al. The diffusion-weighted imaging perfusion fraction f is a potential marker of sorafenib treatment in advanced hepatocellular carcinoma: a pilot study. Eur Radiol, 2011, 21(2): 281-290. DOI: 10.1007/s00330-010-1914-4
20
Hao FL, Wu H, Niu GM. The application of mono-exponential model, bi-exponential model and stretched-exponential model DWI for preoperative grading of gliomas. Chin J Magn Reson Imaging, 2019, 10(6): 401-405. DOI: 10.12015/issn.1674-8034.2019.06.001
21
Lecler A, Savatovsky J, Balvay D, et al. Repeatability of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 Tesla in orbital lesions. Eur Radiol, 2017, 27(12): 5094-5103. DOI: 10.1007/s00330-017-4933-6
22
Jin YN, Zhang Y, Cheng JL, et al. Monoexponential, biexponential, and stretched-exponential models using diffusion-weighted imaging: A quantitative differentiation of breast lesions at 3.0 T. J Magn Reson Imaging, 2019, 50(5): 1461-1467. DOI: 10.1002/jmri.26729

PREV To explore the outcome differences in acute ischemic stroke with different time windows after mechanical thrombectomy
NEXT A comparative study on the evaluation of cardiac function in patients with acute myocardial infarction using compressed sensing cardiac cine imaging compared with traditional cardiac cine imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn