Share:
Share this content in WeChat
X
Review
Application of cardiac magnetic resonance extracellular volume in hypertensive heart disease
HUANG Shumei  JIANG Guihua  WANG Tianyue  LIU Ping  LI Guomin 

Cite this article as: Huang SM, Jiang GH, Wang TY, et al. Application of cardiac magnetic resonance extracellular volume in hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2021, 12(3): 98-101. DOI:10.12015/issn.1674-8034.2021.03.024.


[Abstract] Long-term increase in blood pressure can cause increased cardiac afterload, leading to hypertensive heart disease (HHD). The main changes of hypertensive heart disease are left ventricular hypertrophy and diffuse myocardial fibrosis. The extracellular volume (ECV) measured by cardiac magnetic resonance (CMR) T1 mapping is used as a non-invasive means to assess myocardial fibrosis and plays an important role in the diagnosis of hypertensive heart disease. The author discusses the pathophysiology of myocardial fibrosis in hypertensive heart disease, the characteristics of the extracellular volume of hypertensive heart disease, the change of extracellular volume after treatment, the extracellular volume and other techniques of cardiac magnetic resonance in hypertensive heart disease. The joint application of the company is reviewed.
[Keywords] hypertensive heart disease;myocardial fibrosis;cardiac magnetic resonance;extracellular volume

HUANG Shumei1   JIANG Guihua1, 2*   WANG Tianyue2   LIU Ping2   LI Guomin2  

1 Guangdong Medical University, Zhanjiang 524023, China

2 Department of Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, China

Jiang GH, E-mail: jiangguihua177@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This article is supported by the National Natural Science Found of China No. U1903120
Received  2020-11-10
Accepted  2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.024
Cite this article as: Huang SM, Jiang GH, Wang TY, et al. Application of cardiac magnetic resonance extracellular volume in hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2021, 12(3): 98-101. DOI:10.12015/issn.1674-8034.2021.03.024.

1
Schumann CL, Jaeger NR, Kramer CM. Recent Advances in imaging of hypertensive heart disease. Curr Hypertens Rep, 2019, 21(1): 3-3. DOI: 10.1007/s11906-019-0910-6
2
Schumann CL, Jaeger NR, Kramer CM, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation, 2020, 141(9): e139-e596. DOI: 10.1161/CIR.0000000000000757
3
Weber KT, Sun Y, Gerling IC, et al. Regression of established cardiac fibrosis in hypertensive heart disease. Am J Hypertens, 2017, 30(11):1049-1052. DOI: 10.1093/ajh/hpx054
4
Schelbert EB, Messroghli DR. Messroghli, state of the art: clinical applications of cardiac T1 mapping. Radiology, 2016, 278(3): 658-676. DOI: 10.1148/radiol.2016141802
5
Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. The Journal of clinical investigation, 2007, 117(3): 568-575. DOI: 10.1172/JCI31044
6
Weber KT. Are myocardial fibrosis and diastolic dysfunction reversible in hypertensive heart disease?Congest Heart Fail, 2005, 11(6): 322-326. DOI: 10.1111/j.1527-5299.2005.04479.x
7
Javier D, Arantxa G, Begoña L. Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nat Clin Pract Cardiovasc Med, 2005, 2(4): 209-216. DOI: 10.1038/ncpcardio0158
8
Yoneyama K, Donekal S, Venkatesh BA, et al. Natural history of myocardial function in an adult human population: serial longitudinal observations from MESA. Cardiovasc Imaging, 2016, 9(10): 1164-1173. DOI: 10.1016/j.jcmg.2016.01.038
9
Díez J, Querejeta R, López B, et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation, 2002, 105(21): 2512-2517. DOI: 10.1161/01.CIR.000017264.66561.3D
10
Kasner M, Westermann D, Lopez B, et al. Diastolic tissue doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J Am Coll Cardiol, 2011, 57(8): 977-985. DOI: 10.1016/j.jacc.2010.10.024
11
Turkbey EB, Nacif MS, Guo M, et al., Prevalence and correlates of myocardial scar in a US Cohort. JAMA, 2015, 314(18): 1945-1954. DOI: 10.1001/jama.2015.14849
12
Nayor M, Enserro DM, Xanthakis V, et al. Comorbidities and cardiometabolic disease: relationship with longitudinal changes in diastolic function. Heart Fail, 2018. 6(4): 317-325. DOI: 10.1016/j.jchf.2017.12.018
13
Schwartzkopff B, Motz W, Frenzel H, et al. Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation, 1993, 88(3): 993-1003. DOI: 10.1161/01.CIR.88.3.993
14
McLenachan JM, Dargie HJ. Ventricular arrhythmias in hypertensive left ventricular hypertrophy: relationship to coronary artery disease, left ventricular dysfunction, and myocardial fibrosis. Am J Hypertens, 1990, 3(10Pt 1): 735-740. DOI: 10.1016/0049-3848(90)90297-P
15
Yilmaz A, Kindermann I, Kindermann M, et al. Comparative evaluation of left and right ventricular endomyocardial biopsy. Circulation, 2010, 122(9): 900-909. DOI: 10.1161/CIRCULATIONAHA.109.924167
16
Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med, 2000. 343(20): 1445-1453. DOI: 10.1056/NEJM200011163432003
17
Iles LM, Ellims AH, Llewellyn H, et al. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging, 2015, 16(1): 14-22. DOI: 10.1093/ehjci/jeu182
18
Nordin S, Dancy L, Moon JC, et al. Clinical applications of multiparametric CMR in left ventricular hypertrophy. Int J Cardiovasc Imaging, 2018, 34(4): 577-585. DOI: 10.1007/s10554-018-1320-6
19
Mizuno R, Fujimoto S, Saito Y, et al. Non-invasive quantitation of myocardial fibrosis using combined tissue harmonic imaging and integrated backscatter analysis in dilated cardiomyopathy. Cardiology, 2007, 108(1): 11-17. DOI: 10.1159/000095595
20
Cui Y, Cao Y, Song J,et al. Association between myocardial extracellular volume and strain analysis through cardiovascular magnetic resonance with histological myocardial fibrosis in patients awaiting heart transplantation. J Cardiovasc Magn Reson, 2018, 20(1): 25-25. DOI: 10.1186/s12968-018-0445-z
21
Kammerlander AA, Marzluf BA, Zotter-Tufaro C, et al. T1 mapping by CMR imaging: from histological validation to clinical implication. Cardiovasc Imaging, 2016, 9(1): 14-23. DOI: 10.1016/j.jcmg.2015.11.002
22
Radenkovic D, Weingärtner S, Ricketts L, et al. T(1) mapping in cardiac MRI. Heart Fail revie, 2017, 22(4): 415-430. DOI: 10.1007/s10741-017-9627-2
23
Matsumoto S, Okuda S, Yamada Y, et al. Myocardial T1 values in healthy volunteers measured with saturation method using adaptive recovery times for T1 mapping (SMART1Map) at 1.5 T and 3 T. Heart and Vessels, 2019, 34(11): 1889-1894. DOI: 10.1007/s00380-019-01401-5
24
Al-Wakeel-Marquard N, Rastin S, Muench F, et al. Cardiac T1 mapping in congenital heart disease: bolus vs. infusion protocols for measurements of myocardial extracellular volume fraction. Int J Cardiovasc Imaging, 2017, 33(12): 1961-1968. DOI: 10.1007/s10554-017-1191-2
25
Heydari B, Jerosch-Herold M, Kwong RY. Assessment of myocardial ischemia with cardiovascular magnetic resonance. Prog Cardiovasc Di, 2012, 54(3): 191-203. DOI: 10.1016/j.pcad.2011.09.004
26
Lee JJ, Liu ST, Nacif MS, et al. Myocardial T1 and extracellular volume fraction mapping at 3 tesla. J Cardiovasc Magn Reson, 2011, 13(1): 75-75. DOI: 10.1186/1532-429X-13-75
27
Gai N, Turkbey EB, Nazarian S, et al. T1 mapping of the gadolinium-enhanced myocardium: adjustment for factors affecting interpatient comparison. Magn Reson Med, 2011, 65(5): 1407-1415. DOI: 10.1002/mrm.22716
28
Sibley CT, Noureldin RA, Gai N, et al. T1 Mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology, 2012, 265(3): 724-732. DOI: 10.1148/radiol.12112721
29
Mavrogeni S, Katsi V, Vartela V, et al. The emerging role of cardiovascular magnetic resonance in the evaluation of hypertensive heart disease. BMC Cardiovasc Disord, 2017, 17(1): 132-132. DOI: 10.1186/s12872-017-0556-8
30
Kammerlander AA, Marzluf BA, Zotter-Tufaro C, et al. T1 mapping by CMR imaging: from histological validation to clinical implication. Cardiovasc Imaging, 2016, 9(1): 14-23. DOI: 10.1016/j.jcmg.2015.11.002
31
Miller CR, Naish JH, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Cardiovasc Imaging, 2013, 6(3): 373-383. DOI: 10.1161/CIRCIMAGING.112.000192
32
Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. Cardiovasc Imaging, 2015, 8(2): 172-180. DOI: 10.1016/j.jcmg.2014.09.020
33
Goldfarb JW, Zhao W. Effects of transcytolemmal water exchange on the assessment of myocardial extracellular volume with cardiovascular MRI. NMR Biomed, 2016, 29(4): 499-506. DOI: 10.1002/nbm.3488
34
Berk C, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest, 2007, 117(3): 568-575. DOI: 10.1172/JCI31044
35
Janardhanan R, Kramer CM. Imaging in hypertensive heart disease. Expert review of cardiovascular therapy, 2011, 9(2): 199-209. DOI: 10.1586/erc.10.190
36
de Carvalho FP, Erthal F, Azevedo CF. The role of cardiac MR imaging in the assessment of patients with cardiac amyloidosis. Magn Reson Imaging Clin North Am, 2019, 27(3): 453-463. DOI: https://DOI.org/10.1016/j.mric.2019.04.005
37
Wang SL, Hu HJ, Lu MJ, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in hypertension and associated with left ventricular remodeling. Eur Radiol, 2017, 27(11): 4620-4630. DOI: 10.1186/1532-429X-18-S1-P282
38
Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation, 2000, 102(12): 1388-1393. DOI: 10.1161/01.CIR.102.12.1388
39
Díez J, Querejeta R, López B, et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation, 2002, 105(21): 2512-2517. DOI: 10.1161/01.CIR.000017264.66561.3D
40
Coelho-Filho OR, Shah RW, Mitchell R, et al. Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications for early cardiac remodeling. Circulation, 2013, 128(11): 1225-1233. DOI: 10.1161/CIRCULATIONAHA.112.000438
41
Coelho-Filho OR, Shah RV, Neilan TG, et al. Cardiac magnetic resonance assessment of interstitial myocardial fibrosis and cardiomyocyte hypertrophy in hypertensive mice treated with spironolactone. J Am Heart Assoc, 2014. 3(3): e000790-e000790. DOI: 10.1161/JAHA.114.000790
42
Siepen FA, Baumgärtner C, Müller-Henessen M, et al. Variability of cardiovascular magnetic resonance (CMR) T1 mapping parameters in healthy volunteers during long-term follow-up. Open heart, 2018, 5(1): e000717-e000717. DOI: 10.1136/openhrt-2017-000717
43
Wu LM, Wu R, Ouyang RZ, et al. Fibrosis quantification in hypertensive heart disease with LVH and non-LVH: findings from T1 mapping and contrast-free cardiac diffusion-weighted imaging. Sci Rep, 2017. 7(1): 559-559. DOI: 10.1038/s41598-017-00627-5
44
Jiang M, Wang Z, Su X, et al. The significance of interstitial fibrosis on left ventricular function in hypertensive versus hypertrophic cardiomyopathy. Sci Rep, 2018, 8(1): 9995-9995. DOI: 10.1038/s41598-018-27049-1
45
Inui K, Tachi M, Saito T, et al. Superiority of the extracellular volume fraction over the myocardial T1 value for the assessment of myocardial fibrosis in patients with non-ischemic cardiomyopathy. Magn Reson Imaging, 2016, 34(8): 1141-1145. DOI: 10.1016/j.mri.2016.05.008
46
Swoboda PP, McDiarmid AK, Erhayiem B, et al. Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from Athlete's heart. J Am Coll Cardiol, 2016, 67(18): 2189-2190. DOI: 10.1016/j.jacc.2016.02.054
47
Garg P, Saunders LC, Swift AJ, et al. Role of cardiac T1 mapping and extracellular volume in the assessment of myocardial infarction. Anatol J Cardiol, 2018, 19(6): 404-411. DOI: 10.14744/AnatolJCardiol.2018.39586
48
Carrick D, Haig C, Rauhalammi S, et al. Prognostic significance of infarct core pathology revealed by quantitative non-contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST-elevation myocardial infarction survivors. Eur Heart J, 2016, 37(13): 1044-1059. DOI: 10.1093/eurheartj/ehv372
49
Haaf P, Garg P, Messroghli DR, et al. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson, 2016, 18(1): 89-89. DOI: 10.1186/s12968-016-0308-4
50
Lurz JA, Luecke C, Lang D, et al. CMR-derived extracellular volume fraction as a marker for myocardial fibrosis: the importance of coexisting myocardial inflammation. Cardiovasc Imaging, 2018, 11(1): 38-45. DOI: 10.1016/j.jcmg.2017.01.025

PREV The application of cardiovascular magnetic resonance in risk stratification and prognosis evaluation in dilated cardiomyopathy
NEXT Research progress of background parenchymal enhancement in breast magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn