Share:
Share this content in WeChat
X
Review
The application of radiomics in intrahepatic cholangiocarcinoma
LIU Pei  ZHANG Ju  LIANG Rui  ZHANG Xinyu  DENG Yan  ZHANG Xiaoming 

Cite this article as: Liu P, Zhang J, Liang R, et al. The application of radiomics in intrahepatic cholangiocarcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(3): 109-111, 115. DOI:10.12015/issn.1674-8034.2021.03.027.


[Abstract] Radiomics is a technique to quantify the heterogeneity of tumors by extracting the texture, morphology and other quantitative features of lesions from images through various techniques. It has been gradually used in the diagnosis, biological behavior prediction and post-treatment evaluation of intrahepatic cholangiocarcinoma. However, there are still some limitations in intrahepatic cholangiocarcinoma radiomics, such as uneven data quality, lack of stability and repeatability of extracted features, and poor popularization. This article reviewed the application of radiomics in intrahepatic cholangiocarcinoma.
[Keywords] intrahepatic cholangiocarcinoma;radiomics;computed tomography, X-ray computed;magnetic resonance imaging

LIU Pei   ZHANG Ju   LIANG Rui   ZHANG Xinyu   DENG Yan   ZHANG Xiaoming*  

Department of Radiology, Affiliated Hospital of North Sichuan Medical Colloge, Nanchong 637000, China

Zhang XM, E-mail: cjr.zhxm@vip.163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  Major Cultivation Project of Transformation of Scientific and Technological Achievements in Sichuan Province No. 17CZ0014
Received  2020-11-10
Accepted  2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.027
Cite this article as: Liu P, Zhang J, Liang R, et al. The application of radiomics in intrahepatic cholangiocarcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(3): 109-111, 115. DOI:10.12015/issn.1674-8034.2021.03.027.

1
Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet, 2014, 383(9935): 2168-2179. DOI: 10.1016/S0140-6736(13)61903-0
2
Mavros MN, Economopoulos KP, Alexiou VG, et al. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg, 2014, 149(6): 565-574. DOI: 10.1001/jamasurg.2013.5137
3
Esnaola NF, Meyer JE, Karachristos A, et al. Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma. Cancer, 2016, 122(9): 1349-1369. DOI: 10.1002/cncr.29692
4
Zhang H, Yang T, Wu M, et al. Intrahepatic cholangiocarcinoma: epidemiology, risk factors, diagnosis and surgical management. Cancer Lett, 2016, 379(2): 198-205. DOI: 10.1016/j.canlet.2015.09.008
5
Yeh CN, Hsieh FJ, Chiang KC. Clinical effect of a positive surgical margin after hepatectomy on survival of patients with intrahepatic cholangiocarcinoma. Drug Des Devel Ther, 2015, 9: 163-174. DOI: 10.2147/DDDT.S74940
6
Nakano M, Ariizum SI, Yamamoto M. Intrahepatic cholangiocarcinoma. SeminDiagn Pathol, 2017, 34(2): 160-166. DOI: 10.1053/j.semdp.2016.12.012
7
Wang Y, Li J, Xia Y, et al. Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J Clin Oncol, 2013, 31(9): 1188-1195. DOI: 10.1200/JCO.2012.41.5984
8
Adachi T, Eguchi S. Lymph node dissection for intrahepatic cholangiocarcinoma: a critical review of the literature to date. J Hepatobiliary Pancreat Sci, 2014, 21(3): 162-168. DOI: 10.1002/jhbp.30
9
Wibulpolprasert B, Dhiensiri T. Peripheral cholangiocarcinoma: sonographic evaluation. J Clin Ultrasound, 1992, 20(5): 303-314. DOI: 10.1002/jcu.1870200502
10
Ghouri Y, Mian I, Blechacz B. Cancer review: cholangiocarcinoma. J Carcinog, 2015, 14(1). DOI: 10.4103/1477-3163.151940
11
Fábrega FK, Ghasabeh MA, Pawlik TM, et al. Multimodality imaging of intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr, 2017, 6(2): 67-78. DOI: 10.21037/hbsn.2016.12.10
12
Klinger C, Stuckmann G, Dietrich CF, et al. Contrast-enhanced imaging in hepatic epithelioid hemangioendothelioma: retrospective study of 10 patients. Z Gastroenterol, 2019, 57(6): 753-766. DOI: 10.1055/a-0886-0081
13
Joo I, Lee JM, Yoon JH, et al. Imaging diagnosis of intrahepatic and perihilar cholangiocarcinoma: recent advances and challenges. Radiology, 2018, 288(1): 7-13. DOI: 10.1148/radiol.2018171187
14
Potretzke TA, Tan BR, Doyle MB, et al. Imaging features of biphenotypic primary liver carcinoma (hepatocholangiocarcinoma) and the potential to mimic hepatocellular carcinoma: LI-RADS analysis of CT and MRI features in 61 cases. AJR Am J Roentgenol, 2016, 207(1): 25-31. DOI: 10.2214/AJR.15.14997
15
Hänninen EL, Pech M, Jonas S, et al. Magnetic resonance imaging including magnetic resonance cholangiopancreatography for tumor localization and therapy planning in malignant hilar obstructions. Acta Radiol, 2005, 46(5): 462-470. DOI: 10.1080/02841850510021625
16
Florio AA, Ferlay J, Znaor A, et al. Global trends in intrahepatic and extrahepatic cholangiocarcinoma incidence from 1993 to 2012. Cancer, 2020, 126(11): 2666-2678. DOI: 10.1002/cncr.32803
17
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036
18
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging, 2012, 30(9): 1234-1248. DOI: 10.1016/j.mri.2012.06.010
19
Lubner MG, Smith AD, Sandrasegaran K, et al. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics, 2017, 37(5): 1483-1503. DOI: 10.1148/rg.2017170056
20
Kim JH, Joo I, Kim TY, et al. Diffusion-related MRI parameters for assessing early treatment response of liver metastases to cytotoxic therapy in colorectal cancer. AJR Am J Roentgenol, 2016, 207(3): W26-W32. DOI: 10.2214/AJR.15.15683
21
Bruix J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology, 2016, 150(4): 835-853. DOI: 10.1053/j.gastro.2015.12.041
22
Park HJ, Kim YK, Park MJ, et al. Small intrahepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging for differentiation from hepatocellular carcinoma. Abdom Imaging, 2013, 38(4): 793-801. DOI: 10.1007/s00261-012-9943-x
23
Nishie A, Yoshimitsu K, Asayama Y, et al. Detection of combined hepatocellular and cholangiocarcinomas on enhanced CT: comparison with histologic findings. AJR Am J Roentgenol, 2005, 184(4): 1157-1162. DOI: 10.2214/ajr.184.4.01841157
24
Zhang JH, Chen F, Xue X, et al. Support vector machine based MRI radiomics to identify primary hepatic carcinomas with different pathological types. Chin J Radiol, 2018, 52(5): 333-337. DOI: 10.3760/cma.j.issn.1005-1201.2018.05.003
25
Feng ZY, Ye J. Study on the identification of hepatocarcinoma and intrahepatic cholangiocarcinoma based on T2WI radiomics. Clin Res Pract, 2020, 5(22): 1-4. DOI: 10.19347/j.cnki.2096-1413.202022001
26
Lewis S, Peti S, Hectors SJ, et al. Volumetric quantitative histogram analysis using diffusion-weighted magnetic resonance imaging to differentiate HCC from other primary liver cancers. Abdom Radiol (NY), 2019, 44(3): 912-922. DOI: 10.1007/s00261-019-01906-7
27
Chernyak V, Santillan CS, Papadatos D, et al. LI-RADS® algorithm: CT and MRI. Abdom Radiol (NY), 2018, 43(1): 111-126. DOI: 10.1007/s00261-017-1228-y
28
Zhang J, Huang Z, Cao L, et al. Differentiation combined hepatocellular and cholangiocarcinoma from intrahepatic cholangiocarcinoma based on radiomics machine learning. Ann Transl Med, 2020, 8(4): 119. DOI: 10.21037/atm.2020.01.126
29
Liu X, Khalvati F, Namdar K, et al. Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning?Eur Radiol, 2020, 10.1007/s00330-020-07119-7. DOI: 10.1007/s00330-020-07119-7
30
Ho CL, Yu SC, Yeung DW. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med, 2003, 44(2): 213-221. DOI: 10.1016/S0921-4526(02)01648-4
31
Zhou ZD, Zha YM, Huang WS, et al. Differential diagnosis of moderately-or poorly-differentiated hepatocellular carcinoma from intrahepatic cholangiocarcinoma based on 18F-FDG PET-CT radiomics features. Chin J Hepat Surg (Electronic Edition), 2019, 8(2): 154-158. DOI: 10.3877/cma.j.issn.2095-3232.2019.02.016
32
Lin Y, Feng Z, Jiang GP. Gray-scale ultrasound-based radiomics in distinguishing hepatocellular carcinoma from intrahepatic mass-forming cholangiocarcinoma. Chin J Med Imaging, 2020, 28(4): 269-272. DOI: 10.3969/j.issn.1005-5185.2020.04.007
33
Uenishi T, Kubo S, Yamazaki O, et al. Indications for surgical treatment of intrahepatic cholangiocarcinoma with lymph node metastases. J Hepatobiliary Pancreat Surg, 2008, 15(4): 417-422. DOI: 10.1007/s00534-007-1315-5
34
de Jong MC, Nathan H, Sotiropoulos GC, et al. Intrahepatic cholangiocarcinoma: an international multi-institutional analysis of prognostic factors and lymph node assessment. J Clin Oncol, 2011, 29(23): 3140-3145. DOI: 10.1200/JCO.2011.35.6519
35
Hänninen EL, Pech M, Jonas S, et al. Magnetic resonance imaging including magnetic resonance cholangiopancreatography for tumor localization and therapy planning in malignant hilar obstructions. Acta Radiol, 2005, 46(5): 462-470. DOI: 10.1080/02841850510021625.
36
Ji GW, Zhu FP, Zhang YD, et al. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma. Eur Radiol, 2019, 29(7): 3725-3735. DOI: 10.1007/s00330-019-06142-7.
37
Xu L, Yang P, Liang W, et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. Theranostics, 2019, 9(18): 5374-5385. DOI: 10.7150/thno.34149.
38
Spolverato G, Kim Y, Alexandrescu S, et al. Management and outcomes of patients with recurrent intrahepatic cholangiocarcinoma following previous curative-intent surgical resection. Ann Surg Oncol, 2016, 23(1): 235-243. DOI: 10.1245/s10434-015-4642-9.
39
Yamashita YI, Shirabe K, Beppu T, et al. Surgical management of recurrent intrahepatic cholangiocarcinoma: predictors, adjuvant chemotherapy, and surgical therapy for recurrence: a multi-institutional study by the kyushu study group of liver surgery. Ann Gastroenterol Surg, 2017, 1(2): 136-142. DOI: 10.1002/ags3.12018.
40
Liang W, Xu L, Yang P, et al. Novel nomogram for preoperative prediction of early recurrence in intrahepatic cholangiocarcinoma. Front Oncol, 2018, 8: 360. DOI: 10.3389/fonc.2018.00360.
41
Zhao L, Ma X, Liang M, et al. Prediction for early recurrence of intrahepatic mass-forming cholangiocarcinoma: quantitative magnetic resonance imaging combined with prognostic immunohistochemical markers. Cancer Imaging, 2019, 19(1): 49. DOI: 10.1186/s40644-019-0234-4.
42
Sadot E, Simpson AL, Do RK, et al. Cholangiocarcinoma: correlation between molecular profiling and imaging phenotypes. PLoS One. 2015, 10(7): e0132953. DOI: 10.1371/journal.pone.0132953.
43
King MJ, Hectors S, Lee KM, et al. Outcomes assessment in intrahepatic cholangiocarcinoma using qualitative and quantitative imaging features. Cancer Imaging, 2020, 20(1): 43. DOI: 10.1186/s40644-020-00323-0.
44
Peng YT, Zhou CY, Lin P, et al. Preoperative ultrasound radiomics signatures for noninvasive evaluation of biological characteristics of intrahepatic cholangiocarcinoma. Acad Radiol, 2020, 27(6): 785-797. DOI: 10.1016/j.acra.2019.07.029.
45
Mosconi C, Cucchetti A, Bruno A, et al. Radiomics of cholangiocarcinoma on pretreatment CT can identify patients who would best respond to radioembolisation. Eur Radiol, 2020, 30(8): 4534-4544. DOI: 10.1007/s00330-020-06795-9.
46
Zhang J, Wang X, Zhang L, et al. Radiomics predict postoperative survival of patients with primary liver cancer with different pathological types. Ann Transl Med, 2020, 8(13): 820. DOI: 10.21037/atm-19-4668.

PREV Application progress of MRI-based artificial intelligence in the diagnosis of liver fibrosis
NEXT Advances in application of radiomics in colorectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn