Share:
Share this content in WeChat
X
Review
Advances in risk factors and imaging prediction for pathological fractures of spinal metastases
QIN Siyuan  WANG Qizheng  ZHANG Enlong  LIU Ke  CHEN Yongye  LANG Ning 

Cite this article as: Qin SY, Wang QZ, Zhang EL, et al. Advances in risk factors and imaging prediction for pathological fractures of spinal metastases[J]. Chin J Magn Reson Imaging, 2021, 12(3): 116-119. DOI:10.12015/issn.1674-8034.2021.03.029.


[Abstract] Pathological fractures are a serious complication of spinal metastases. The increasing number of patients with cancer and their prolonged life expectancy have led to an increase in the number of patients with spinal metastases. If early identification of those at high risk for pathological fractures can be made, it can help to intervene earlier to improve the quality of patients' final life. This review has summarized advances in the risk factors and imaging prediction tools for pathological fractures in spinal metastases.
[Keywords] spinal metastases;pathological fracture;risk factors;predict;imaging

QIN Siyuan1   WANG Qizheng1   ZHANG Enlong2   LIU Ke1   CHEN Yongye1   LANG Ning1*  

1 Department of Radiology, Peking University Third Hospital, Beijing 100191, China

2 Department of Radiology, Peking University International Hospital, Beijing 102206, China

Lang N, E-mail: 13501241339@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of National Natural Science Foundation of China No. 81971578, 81701648 Beijing Natural Science Foundation No. Z190020
Received  2020-10-26
Accepted  2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.029
Cite this article as: Qin SY, Wang QZ, Zhang EL, et al. Advances in risk factors and imaging prediction for pathological fractures of spinal metastases[J]. Chin J Magn Reson Imaging, 2021, 12(3): 116-119. DOI:10.12015/issn.1674-8034.2021.03.029.

1
Wang F, Zhang H, Yang L, et al. Epidemiological characteristics of 1196 patients with spinal metastases: a retrospective study. Orthop Surg, 2019, 11(6): 1048-1053.
2
Pope MH, Panjabi M. Biomechanical definitions of spinal instability. Spine (Phila Pa 1976), 1985, 10(3): 255-256. DOI: 10.1097/00007632-198504000-00013
3
Whyne CM, Hu SS, Lotz JC. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine (Phila Pa 1976), 2003, 28(7): 652-660. DOI: 10.1097/01.BRS.0000051910.97211.BA
4
Hibberd CS, Quan GMY. Risk factors for pathological fracture and metastatic epidural spinal cord compression in patients with spinal metastases. Orthopedics, 2018, 41(1): e38-e45. DOI: 10.3928/01477447-20171106-06
5
Krishnaney AA, Steinmetz MP, Benzel EC. Biomechanics of metastatic spine cancer. Neurosurg Clin N Am, 2004, 15(4): 375-380. DOI: 10.1016/j.nec.2004.04.001
6
Tschirhart CE, Finkelstein JA, Whyne CM. Biomechanics of vertebral level, geometry, and transcortical tumors in the metastatic spine. J Biomech, 2007, 40(1): 46-54. DOI: 10.1016/j.jbiomech.2005.11.014
7
Taneichi H, Kaneda K, Takeda N, et al. Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine (Phila Pa 1976), 1997, 22(3): 239-245. DOI: 10.1097/00007632-199702010-00002
8
Tschirhart CE, Finkelstein JA, Whyne CM. Metastatic burst fracture risk assessment based on complex loading of the thoracic spine. Ann Biomed Eng, 2006, 34(3): 494-505. DOI: 10.1007/s10439-005-9063-7
9
Ruffoni D, Fratzl P, Roschger P, et al. Effect of temporal changes in bone turnover on the bone mineralization density distribution: a computer simulation study. J Bone Miner Res, 2008, 23(12): 1905-1914. DOI: 10.1359/jbmr.080711
10
Dimar JR, Voor MJ, Zhang YM, et al. A human cadaver model for determination of pathologic fracture threshold resulting from tumorous destruction of the vertebral body. Spine (Phila Pa 1976), 1998, 23(11): 1209-1214. DOI: 10.1097/00007632-199806010-00006
11
Salvatore G, Berton A, Giambini H, et al. Biomechanical effects of metastasis in the osteoporotic lumbar spine: a finite element analysis. BMC Musculoskelet Disord, 2018, 19(1): 38. DOI: 10.1186/s12891-018-1953-6
12
Sciubba DM, Petteys RJ, Dekutoski MB, et al. Diagnosis and management of metastatic spine disease. A review. J Neurosurg Spine, 2010, 13(1): 94-108. DOI: 10.3171/2010.3.SPINE09202
13
Lee CH, Hong JT, Lee SH, et al. Is the spinal instability neoplastic score accurate and reliable in predicting vertebral compression fractures for spinal metastasis?A systematic review and qualitative analysis. J Korean Neurosurg Soc, 2020. DOI: 10.3340/jkns.2020.0105
14
Boehling NS, Grosshans DR, Allen PK, et al. Vertebral compression fracture risk after stereotactic body radiotherapy for spinal metastases. J Neurosurg Spine, 2012, 16(4): 379-386. DOI: 10.3171/2011.11.SPINE116
15
Lee SH, Tatsui CE, Ghia AJ, et al. Can the spinal instability neoplastic score prior to spinal radiosurgery predict compression fractures following stereotactic spinal radiosurgery for metastatic spinal tumor?: a post hoc analysis of prospective phase II single-institution trials. J Neurooncol, 2016, 126(3): 509-517. DOI: 10.1007/s11060-015-1990-z
16
Boehling NS, Grosshans DR, Allen PK, et al. Vertebral compression fracture risk after stereotactic body radiotherapy for spinal metastases. J Neurosurg Spine, 2012, 16(4): 379-386. DOI: 10.3171/2011.11.SPINE116
17
Glogowska-Szelag J. Assessment of the relationship between BMD and body mass index BMI in women with postmenopausal osteoporosis. Wiadomosci Lekarskie (Warsaw, Poland: 1960), 2018, 71(9): 1714-8.
18
Chen X, Gui C, Grimm J, et al. Normal tissue complication probability of vertebral compression fracture after stereotactic body radiotherapy for de novo spine metastasis. Radiother Oncol, 2020, 150: 142-149. DOI: 10.1016/j.radonc.2020.06.009
19
Kaze AD, Rosen HN, Paik JM. A meta-analysis of the association between body mass index and risk of vertebral fracture. Osteoporos Int, 2018, 29(1): 31-39. DOI: 10.1007/s00198-017-4294-7
20
Delank KS, Wendtner C, Eich HT, et al. The treatment of spinal metastases. Dtsch Arztebl Int, 2011, 108(5): 71-80. DOI: 10.3238/arztebl.2011.0071
21
Boyce-Fappiano D, Elibe E, Schultz L, et al. Analysis of the factors contributing to vertebral compression fractures after spine stereotactic radiosurgery. Int J Radiat Oncol Biol Phys, 2017, 97(2): 236-245. DOI: 10.1016/j.ijrobp.2016.09.007
22
Germano IM, Carai A, Pawha P, et al. Clinical outcome of vertebral compression fracture after single fraction spine radiosurgery for spinal metastases. Clin Exp Metastasis, 2016, 33(2): 143-149. DOI: 10.1007/s10585-015-9764-8
23
Cunha MV, Al-Omair A, Atenafu EG, et al. Vertebral compression fracture (VCF) after spine stereotactic body radiation therapy (SBRT): analysis of predictive factors. Int J Radiat Oncol Biol Phys, 2012, 84(3): e343-e349. DOI: 10.1016/j.ijrobp.2012.04.034
24
Sze WM, Shelley MD, Held I, et al. Palliation of metastatic bone pain: single fraction versus multifraction radiotherapy: a systematic review of randomised trials. Clin Oncol, 2003, 15(6): 345-352. DOI: 10.1002/14651858.CD004721
25
Faruqi S, Tseng CL, Whyne C, et al. Vertebral compression fracture after spine stereotactic body radiation therapy: a review of the pathophysiology and risk factors. Neurosurgery, 2018, 83(3): 314-322. DOI: 10.1093/neuros/nyx493
26
Gong Y, Xu L, Zhuang H, et al. Efficacy and safety of different fractions in stereotactic body radiotherapy for spinal metastases: a systematic review. Cancer Med, 2019, 8(14): 6176-6184. DOI: 10.1002/cam4.2546
27
Vargas E, Susko MS, Mummaneni PV, et al. Vertebral body fracture rates after stereotactic body radiation therapy compared with external- beam radiation therapy for metastatic spine tumors. J Neurosurg Spine, 2020: 1-7. DOI: 10.3171/2020.5.SPINE191383
28
Al-Omair A, Smith R, Kiehl TR, et al. Radiation-induced vertebral compression fracture following spine stereotactic radiosurgery: clinicopathological correlation. J Neurosurg Spine, 2013, 18(5): 430-435. DOI: 10.3171/2013.2.SPINE12739
29
Bhattacharya IS, Hoskin PJ. Stereotactic body radiotherapy for spinal and bone metastases. Clin Oncol (R Coll Radiol), 2015, 27(5): 298-306. DOI: 10.1016/j.clon.2015.01.030
30
Husain ZA, Thibault I, Letourneau D, et al. Stereotactic body radiotherapy: a new paradigm in the management of spinal metastases. CNS Oncol, 2013, 2(3): 259-270. DOI: 10.2217/cns.13.11
31
Sahgal A, Atenafu EG, Chao S, et al. Vertebral compression fracture after spine stereotactic body radiotherapy: a multi-institutional analysis with a focus on radiation dose and the spinal instability neoplastic score. J Clin Oncol, 2013, 31(27): 3426-3431. DOI: 10.1200/JCO.2013.50.1411
32
Chan NK, Abdullah KG, Lubelski D, et al. Stereotactic radiosurgery for metastatic spine tumors. J Neurosurg Sci, 2014, 58(1): 37-44.
33
Chang JH, Shin JH, Yamada YJ, et al. Stereotactic body radiotherapy for spinal metastases: what are the risks and how do we minimize them?Spine (Phila Pa 1976), 2016, 41(Suppl 20): S238-S245. DOI: 10.1097/BRS.0000000000001823
34
Jabbari S, Gerszten PC, Ruschin M, et al. Stereotactic body radiotherapy for spinal metastases: practice guidelines, outcomes, and risks. Cancer J, 2016, 22(4): 280-289. DOI: 10.1097/PPO.0000000000000205
35
Delpla A, Tselikas L, De Baere T, et al. Preventive vertebroplasty for long-term consolidation of vertebral metastases. Cardiovasc Int Radiol, 2019, 42(12): 1726-1737. DOI: 10.1007/s00270-019-02314-6
36
Kanis JA, Adachi JD, Cooper C, et al. Standardising the descriptive epidemiology of osteoporosis: recommendations from the epidemiology and quality of life working group of IOF. Osteoporos Int, 2013, 24(11): 2763-2764. DOI: 10.1007/s00198-013-2413-7
37
Kanis JA, Harvey NC, Johansson H, et al. A decade of FRAX: how has it changed the management of osteoporosis?Aging Clin Exp Res, 2020, 32(2): 187-196. DOI: 10.1007/s40520-019-01432-y
38
Saldarriaga S, Catano SJ, Rezaei A, et al. Effect of metastatic lesion size and location on the load-bearing capacity of vertebrae using an optimized ash density-modulus equation. Comput Methods Biomech Biomed Engin, 2020, 23(10): 601-610. DOI: 10.1080/10255842.2020.1754808
39
Hoff BA, Toole M, Yablon C, et al. Potential for early fracture risk assessment in patients with metastatic bone disease using parametric response mapping of CT images. Tomography, 2015, 1(2): 98-104. DOI: 10.18383/j.tom.2015.00154
40
Ehresman J, Schilling A, Pennington Z, et al. A novel MRI-based score assessing trabecular bone quality to predict vertebral compression fractures in patients with spinal metastasis. J Neurosurg Spine, 2019: 1-8. DOI: 10.3171/2019.9.SPINE19954
41
Muehlematter UJ, Mannil M, Becker AS, et al. Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning. Eur Radiol, 2019, 29(5): 2207-2217. DOI: 10.1007/s00330-018-5846-8
42
Oh E, Seo SW, Yoon YC, et al. Prediction of pathologic femoral fractures in patients with lung cancer using machine learning algorithms: Comparison of computed tomography-based radiological features with clinical features versus without clinical features. J Orthop Surg (Hong Kong), 2017, 25(2): 2309499017716243. DOI: 10.1177/2309499017716243
43
Wang Z, Wen X, Lu Y, et al. Exploiting machine learning for predicting skeletal-related events in cancer patients with bone metastases. Oncotarget, 2016, 7(11): 12612-12622. DOI: 10.18632/oncotarget.7278

PREV Advances in application of radiomics in colorectal cancer
NEXT Clinical application progress of magnetic resonance simultaneous multi-slice technology
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn