Share:
Share this content in WeChat
X
Review
Clinical application progress of magnetic resonance simultaneous multi-slice technology
LI Xue  YAN Fuhua 

Cite this article as: Li X, Yan FH. Clinical application progress of magnetic resonance simultaneous multi-slice technology[J]. Chin J Magn Reson Imaging, 2021, 12(3): 120-124. DOI:10.12015/issn.1674-8034.2021.03.030.


[Abstract] The simultaneous multi-slice (SMS) technique utilizes a multiband radiofrequency pulse to excite and acquire multiple slices simultaneously, which represents the beginning of a new era of multi-slice magnetic resonance imaging. At present, the rapid imaging technology has been commercialized and put into clinical use, the scope of research has also been extended from the nervous system to other parts and organs of the body. This article reviews a large number of literatures and reviews the progress of the research on the application of SMS technique.
[Keywords] magnetic resonance imaging;simultaneous multi-slice;fast imaging

LI Xue   YAN Fuhua*  

Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Yan FH, E-mail: yfh11655@rjh.com.cn

Conflicts of interest   None.

Received  2020-10-04
Accepted  2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.030
Cite this article as: Li X, Yan FH. Clinical application progress of magnetic resonance simultaneous multi-slice technology[J]. Chin J Magn Reson Imaging, 2021, 12(3): 120-124. DOI:10.12015/issn.1674-8034.2021.03.030.

1
Barth M, Breuer F, Koopmans PJ, et al. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med, 2016, 75(1): 63-81. DOI: 10.1002/mrm.25897
2
Yoon JH, Nickel MD, Peeters JM, et al. Rapid imaging: recent advances in abdominal MRI for reducing acquisition time and its clinical applications. Korean J Radiol, 2019, 20(12): 1597-1615. DOI: 10.3348/kjr.2018.0931
3
Larkman DJ, Hajnal JV, Herlihy AH, et al. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging, 2001, 13(2): 313-317. DOI: 10.1002/1522-2586(200102)13:2<313::aid-jmri1045>3.0.co;2-w
4
Van Essen DC, Smith SM, Barch DM, et al. The WU-Minn human connectome project: an overview. Neuroimage, 2013, 80: 62-79. DOI: 10.1016/j.neuroimage.2013.05.041
5
Van Essen DC, Ugurbil K, Auerbach E, et al. The human connectome project: a data acquisition perspective. Neuroimage, 2012, 62(4): 2222-2231. DOI: 10.1016/j.neuroimage.2012.02.018
6
Moeller S, Yacoub E, Olman CA, et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med, 2010, 63(5): 1144-1153. DOI: 10.1002/mrm.22361
7
Feinberg DA, Moeller S, Smith SM, et al. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One, 2010, 5(12): e15710. DOI: 10.1371/journal.pone.0015710
8
Setsompop K, Gagoski BA, Polimeni JR, et al. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med, 2012, 67(5): 1210-1224. DOI: 10.1002/mrm.23097
9
Frost R, Jezzard P, Douaud G, et al. Scan time reduction for readout-segmented EPI using simultaneous multislice acceleration: Diffusion-weighted imaging at 3 and 7 Tesla. Magn Reson Med, 2015, 74(1): 136-149. DOI: 10.1002/mrm.25391
10
Su T, Chen Y, Zhang Z, et al. Optimization of simultaneous multislice, readout-segmented echo planar imaging for accelerated diffusion- weighted imaging of the head and neck: a preliminary study. Acad Radiol, 2020, S(19): 1076-6332. DOI: 10.1016/j.acra.2019.12.008
11
Paul K, Huelnhagen T, Oberacker E, et al. Multiband diffusion- weighted MRI of the eye and orbit free of geometric distortions using a RARE-EPI hybrid. NMR Biomed, 2018, 31(3): e3872. DOI: 10.1002/nbm.3872
12
Jiang JS, Zhu LN, Wu Q, et al. Feasibility study of using simultaneous multi-slice RESOLVE diffusion weighted imaging to assess parotid gland tumors: comparison with conventional RESOLVE diffusion weighted imaging. BMC Med Imaging, 2020, 20(1): 93. DOI: 10.1186/s12880-020-00492-1
13
Yokota H, Sakai K, Tazoe J, et al. Clinical feasibility of simultaneous multi-slice imaging with blipped-CAIPI for diffusion-weighted imaging and diffusion-tensor imaging of the brain. Acta Radiol, 2017, 58(12): 1500-1510. DOI: 10.1177/0284185117692171
14
Wang Y, Moeller S, Li X, et al. Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion- free pseudo-continuous arterial spin labeling at 3 and 7 T.Neuroimage, 2015, 113: 279-288. DOI: 10.1016/j.neuroimage.2015.03.060
15
Cohen AD, Nencka AS, Wang Y. Multiband multi-echo simultaneous ASL/BOLD for task-induced functional MRI. PLoS One, 2018, 13(2): e0190427. DOI: 10.1371/journal.pone.0190427
16
Feinberg DA, Vu AT, Beckett A. Pushing the limits of ultra-high resolution human brain imaging with SMS-EPI demonstrated for columnar level fMRI.Neuroimage, 2018, 164: 155-163. DOI: 10.1016/j.neuroimage.2017.02.020
17
Filli L, Piccirelli M, Kenkel D, et al. Accelerated magnetic resonance diffusion tensor imaging of the median nerve using simultaneous multi- slice echo planar imaging with blipped CAIPIRINHA. Eur Radiol, 2016, 26(6): 1921-1928. DOI: 10.1007/s00330-015-3985-8
18
Manoliu A, Ho M, Piccirelli M, et al. Simultaneous multislice readout-segmented echo planar imaging for accelerated diffusion tensor imaging of the mandibular nerve: a feasibility study. J Magn Reson Imaging, 2017, 46(3): 663-677. DOI: 10.1002/jmri.25603
19
Stab D, Wech T, Breuer FA, et al. High resolution myocardial first-pass perfusion imaging with extended anatomic coverage. J Magn Reson Imaging, 2014, 39(6): 1575-1587. DOI: 10.1002/jmri.24303
20
Price AN, Cordero-Grande L, Malik SJ, et al. Simultaneous multislice imaging of the heart using multiband balanced SSFP with blipped- CAIPI. Magn Reson Med, 2020, 83(6): 2185-2196. DOI: 10.1002/mrm.28086
21
McElroy S, Ferrazzi G, Nazir MS, et al. Combined simultaneous multislice bSSFP and compressed sensing for first-pass myocardial perfusion at 1.5 T with high spatial resolution and coverage. Magn Reson Med, 2020, 84: 3103-3116. DOI: 10.1002/mrm.28345
22
Nazir MS, Neji R, Speier P, et al. Simultaneous multi slice (SMS) balanced steady state free precession first-pass myocardial perfusion cardiovascular magnetic resonance with iterative reconstruction at 1.5 T. J Cardiovasc Magn Reson, 2018, 20(1): 84. DOI: 10.1186/s12968-018-0502-7
23
Mekkaoui C, Reese TG, Jackowski MP, et al. Diffusion MRI in the heart.NMR Biomed, 2017, 30(3): 10. DOI: 1002/nbm.3426
24
Angus Z, Lau EMT, Frost Robert, et al. Accelerated human cardiac diffusion tensor imaging using simultaneous multislice imaging. Magn Reson Med, 2015, 73(3): 995-1004. DOI: 10.1002/mrm.25200
25
Mekkaoui C, Reese TG, Jackowski MP, et al. Sosnovik. Diffusion tractography of the entire left ventricle by using free-breathing accelerated simultaneous multisection imaging. Radiology, 2017, 282(3): 850-856. DOI: 10.1148/radiol.2016152613
26
Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med, 2009, 62(2): 468-475. DOI: 10.1002/mrm.22024
27
Bogner W, Pinker-Domenig K, Bickel H, et al. Readout-segmented echo-planar imaging improves the diagnostic performance of diffusion-weighted MR breast examinations at 3.0 T. Radiology, 2012, 263(1): 64-76. DOI: 10.1148/radiol.12111494
28
Filli L, Ghafoor S, Kenkel D, et al. Simultaneous multi-slice readout-segmented echo planar imaging for accelerated diffusion- weighted imaging of the breast. Eur J Radiol, 2016, 85(1): 274-278. DOI: 10.1016/j.ejrad.2015.10.009
29
Ohlmeyer S, Laun FB, Palm T, et al. Simultaneous multislice echo planar imaging for accelerated diffusion-weighted imaging of malignant and benign breast lesions. Invest Radiol, 2019, 54(8): 524-530. DOI: 10.1097/RLI.0000000000000560
30
Machida Y, Nomura K, Shimauchi A, et al. Diffusion-weighted imaging with simultaneous multi-slice echo-planar technique for the diagnosis of breast magnetic resonance imaging. Jpn J Radiol, 2020, 38(4): 358–364. DOI: 10.1007/s11604-020-00919-3
31
Taron J, Martirosian P, Erb M, et al. Simultaneous multislice diffusion-weighted MRI of the liver: analysis of different breathing schemes in comparison to standard sequences. J Magn Reson Imaging, 2016, 44(4): 865-879. DOI: 10.1002/jmri.25204
32
Boss A, Barth B, Filli L, et al. Simultaneous multi-slice echo planar diffusion weighted imaging of the liver and the pancreas: optimization of signal-to-noise ratio and acquisition time and application to intravoxel incoherent motion analysis. Eur J Radiol, 2016, 85(11): 1948-1955. DOI: 10.1016/j.ejrad.2016.09.002
33
Zhang G, Sun H, Qian T, et al. Diffusion-weighted imaging of the kidney: comparison between simultaneous multi-slice and integrated slice-by-slice shimming echo planar sequence. Clin Radiol, 2019, 74(4): 325 e321-325 e328. DOI: 10.1016/j.crad.2018.12.005
34
Weiss J, Martirosian P, Taron J, et al. Feasibility of accelerated simultaneous multislice diffusion-weighted MRI of the prostate. J Magn Reson Imaging, 2017, 46(5): 1507-1515. DOI: 10.1002/jmri.25665
35
Park JH, Seo N, Lim JS, et al. Feasibility of simultaneous multislice acceleration technique in diffusion-weighted magnetic resonance imaging of the rectum. Korean J Radiol, 2020, 21(1): 77-87. DOI: 10.3348/kjr.2019.0406
36
Taron J, Martirosian P, Kuestner T, et al. Scan time reduction in diffusion-weighted imaging of the pancreas using a simultaneous multislice technique with different acceleration factors: how fast can we go?Eur Radiol, 2018, 28(4): 1504-1511. DOI: 10.1007/s00330-017-5132-1
37
Majeed W, Kalra P, Kolipaka A. Simultaneous multislice rapid magnetic resonance elastography of the liver. NMR Biomed, 2020, 33(4): e4252. DOI: 10.1002/nbm.4252
38
Xu J, Cheng YJ, Wang ST, et al. Simultaneous multi-slice accelerated diffusion-weighted imaging with higher spatial resolution for patients with liver metastases from neuroendocrine tumours. Clin Radiol, 2020, S0009-9260(20): 30377-30379. DOI: 10.1016/j.crad.2020.08.024
39
Haraikawa M, Suzuki M, Inoue K, et al. Simultaneous multi-slice MR imaging of the hip at 3 T to reduce acquisition times and maintain image quality. BMC Musculoskelet Disord, 2018, 19(1): 440. DOI: 10.1186/s12891-018-2342-x
40
Filli L, Piccirelli M, Kenkel D, et al. Simultaneous multislice echo planar imaging with blipped controlled aliasing in parallel imaging results in higher acceleration: a promising technique for accelerated diffusion tensor imaging of skeletal muscle. Invest Radiol, 2015, 50(7): 456-463. DOI: 10.1097/RLI.0000000000000151
41
Fritz J, Fritz B, Zhang J, et al. Simultaneous multislice accelerated turbo spin echo magnetic resonance imaging: comparison and combination with in-plane parallel imaging acceleration for high-resolution magnetic resonance imaging of the knee. Invest Radiol, 2017, 52(9): 529-537. DOI: 10.1097/RLI.0000000000000376
42
Benali S, Johnston PR, Gholipour A, et al. Simultaneous multi-slice accelerated turbo spin echo of the knee in pediatric patients. Skeletal Radiol, 2018, 47(6): 821-831. DOI: 10.1007/s00256-017-2868-2

PREV Advances in risk factors and imaging prediction for pathological fractures of spinal metastases
NEXT
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn