Share:
Share this content in WeChat
X
Clinical Article
Quantitative investigation of global volumetry and relaxometry of the brain in Parkinson's disease patients using synthetic MRI
LU Na  LI Chunmei  LI Shuhua  SU Wen  YU Lu  WU Puye  CHEN Min 

Cite this article as: Lu N, Li CM, Li SH, et al. Quantitative investigation of global volumetry and relaxometry of the brain in Parkinson's disease patients using synthetic MRI[J]. Chin J Magn Reson Imaging, 2021, 12(4): 1-5, 29. DOI:10.12015/issn.1674-8034.2021.04.001.


[Abstract] Objective To evaluate the feasibility of global brain volumetric and relaxometry in differentiating Parkinson's disease patients from healthy controls using the synthetic MRI technique. Materials andMethods Twenty-eight PD patients (age: 67±11 years) and the same number of healthy controls (age: 68±9 years) were enrolled in this study. All participants underwent synthetic MRI (MAGnetic resonance imaging compilation, MAGiC) acquisition on a 3.0 T MRI scanner (Signa Pioneer, GE Healthcare). Volumetric characteristics including white matter volume (WMV), gray matter volume (GMV), cerebral spinal fluid volume (CSFV), myelin volume (MYV), brain parenchymal volume (BPV), intracranial volume (ICV), white matter fraction (WMF=WMV/BPV), gray matter fraction (GMF=GMV/BPV), myelin fraction (MYF=MYV/BPV) and cerebral spinal fluid fraction (CSFF=CSF/ICV) were acquired. The average relaxometric characteristics including T1, T2 and proton density (PrD) values in WM, GM and CSF were calculated from voxels with partial volume exceeding 95% of the corresponding tissue. Independent-samples t-test was used to assess the difference of the age, volumetric and relaxometric characteristics between two groups. Chi-square test was used to assess the gender difference between two groups.Results No difference was observed in age (P=0.587) and gender (P=0.181) between these two groups. For volumetry, WMV (515.514±71.213 vs. 461.800±64.816 P=0.005), WMF (43.621±3.788 vs. 40.660±2.844, P=0.002), MYV (162.257±24.928 vs. 144.611±22.575, P=0.008) and MYF (13.707±1.284 vs. 12.711±1.094, P=0.003) were significantly higher while GMF (52.868±3.234 vs. 56.011±2.550, P=0.000) were significantly lower in PD patients. No difference was observed in GMV, BPV, ICV, CSFV and CSFF. For relaxometry, GM T1 value (1604.872±56.038 vs. 1570.553±55.992, P=0.026), WM T1 value (749.786±21.935 vs. 761.379±20.651, P=0.047) were significantly higher while CSF PrD value (101.149±1.327 vs. 101.842±0.972, P=0.030) were significantly lower in PD patients. No difference was observed in CSF T1 value, CSF T2 value, WM T2 value, and WM PrD value.Conclusions Volumetry and relaxometry simultaneously obtained from synthetic MRI may have potential to be used as quantitative markers for clinic to differentiate Parkinson's disease patients among the healthy.
[Keywords] magnetic resonance imaging;Parkinson's disease;global volumetry;relaxometry

LU Na1, 2   LI Chunmei1   LI Shuhua3   SU Wen3   YU Lu4   WU Puye5   CHEN Min1, 2*  

1 Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China

2 Graduate School of Peking Union Medical College, Beijing 100730, China

3 Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China

4 Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing 100037, China

5 GE Healthcare, Beijing 100176, China

Chen M, E-mail: cjr.chenmin@vip.163.com

Conflicts of interest   None.

This work was part of National Natural Science Foundation of China (No. 81771826); National Key R&D Program Found (No. 2016YFC1306602); Chinese Academy of Medical Sciences Found (No. 2018-12M-1-002).
Received  2020-12-17
Accepted  2021-01-28
DOI: 10.12015/issn.1674-8034.2021.04.001
Cite this article as: Lu N, Li CM, Li SH, et al. Quantitative investigation of global volumetry and relaxometry of the brain in Parkinson's disease patients using synthetic MRI[J]. Chin J Magn Reson Imaging, 2021, 12(4): 1-5, 29. DOI:10.12015/issn.1674-8034.2021.04.001.

1
Kalia LV, Lang AE. Parkinson's disease[J]. Lancet (London, England), 2015, 386(9996): 896-912. DOI: 10.1016/S0140-6736(14)61393-3.
2
Nussbaum RL, Ellis CE. Alzheimer's disease and Parkinson's disease[J]. The New England J Med, 2003, 348(14): 1356-1364. DOI: 10.1056/NEJM2003ra020003.
3
Samii A, Nutt JG, Ransom BR. Parkinson's disease[J]. Lancet (London, England), 2004, 363(9423): 1783-1793. DOI: 10.1016/S0140-6736(04)16305-8.
4
Hayes MT. Parkinson's disease and Parkinsonism[J]. Am J Med, 2019, 132(7): 802-807. DOI: 10.1016/j.amjmed.2019.03.001.
5
Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics[J]. J Neurochem, 2016, 139(Suppl 1): 179-197. DOI: 10.1111/jnc.13425.
6
Reich SG, Savitt JM. Parkinson's disease[J]. Med Clin North Am, 2019, 103(2): 337-350. DOI: 10.1016/j.mcna.2018.10.014.
7
Goetz CG, Tilley BC, Shaftman SR, et al. Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): Scale presentation and clinimetric testing results[J]. Movement Disorders, 2008, 23(15): 2129-2170. DOI: 10.1002/mds.22340.
8
Bernheimer H, Birkmayer W, Hornykiewicz O, et al. Brain dopamine and the syndromes of Parkinson and huntington. Clinical, morphological and neurochemical correlations[J]. J Neurol Sci, 1973, 20(4): 415-455. DOI: 10.1016/0022-510x(73)90175-5.
9
Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: A review[J]. JAMA, 2020, 323(6): 548-560. DOI: 10.1001/jama.2019.22360.
10
Lotankar S, Prabhavalkar KS, Bhatt LK. Biomarkers for Parkinson's disease: recent advancement[J]. Neuroscience Bulletin, 2017, 33(5): 585-597. DOI: 10.1007/s12264-017-0183-5.
11
Pyatigorskaya N, Gallea C, Garcia-Lorenzo D, et al. A review of the use of magnetic resonance imaging in Parkinson's disease[J]. Ther Adv Neurol Disord, 2014, 7(4): 206-220. DOI: 10.1177/1756285613511507.
12
Warntjes JB, Leinhard OD, West J, et al. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage[J]. Magn Reson Med, 2008, 60(2): 320-329. DOI: 10.1002/mrm.21635.
13
Warntjes JBM, Dahlqvist O, Lundberg P. Novel method for rapid, simultaneousT1,T2*, and proton density quantification[J]. Magn Reson Med, 2007, 57(3): 528-537. DOI: 10.1002/mrm.21165.
14
Granberg T, Uppman M, Hashim F, et al. Clinical feasibility of synthetic MRI in multiple sclerosis: A diagnostic and volumetric validation study[J]. AJNR Am J Neuroradiol, 2016, 37(6): 1023-1029. DOI: 10.3174/ajnr.A4665.
15
Vågberg M, Ambarki K, Lindqvist T, et al. Brain parenchymal fraction in an age-stratified healthy population-determined by MRI using manual segmentation and three automated segmentation methods[J]. J Neuroradiology, 2016, 43(6): 384-391. DOI: 10.1016/j.neurad.2016.08.002.
16
West J, Blystad I, Engström M, et al, Application of quantitative MRI for brain tissue segmentation at 1.5 T and 3.0 T field strengths[J]. PLoS One, 2013, 8(9): e74795. DOI: 10.1371/journal.pone.0074795.
17
Tanenbaum LN, Tsiouris AJ, Johnson AN, et al. Synthetic MRI for clinical neuroimaging: Results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1103-1110. DOI: 10.3174/ajnr.A5227.
18
Ambarki K, Lindqvist T, Wåhlin A, et al. Evaluation of automatic measurement of the intracranial volume based on quantitative MR imaging[J]. AJNR Am J Neuroradiol, 2012, 33(10): 1951-1956. DOI: 10.3174/ajnr.A3067.
19
Hagiwara A, Warntjes M, Hori M, et al. SyMRI of the brain: Rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement[J]. Invest Radiol, 2017, 52(10): 647-657. DOI: 10.1097/RLI.0000000000000365.
20
Hagiwara A, Fujimoto K, Kamagata K, et al. Age-related changes in relaxation times, proton density, myelin, and tissue volumes in adult brain analyzed by 2-dimensional quantitative synthetic magnetic resonance imaging[J]. Invest Radiol, 2021, 56(3): 163-172. DOI: 10.1097/RLI.0000000000000720.
21
Xu J, Zhang M. Use of magnetic resonance imaging and artificial intelligence in studies of diagnosis of Parkinson's disease[J]. ACS Chem Neuroscience, 2019, 10(6): 2658-2667. DOI: 10.1021/acschemneuro.9b00207.
22
Dickson DW. Neuropathology of Parkinson disease[J]. Parkinsonism & Related Disorders, 2018, 46(1): S30-S33. DOI: 10.1016/j.parkreldis.2017.07.033.
23
Liu H, Yang Y, Xia Y, et al. Aging of cerebral white matter[J]. Ageing Res Reviews, 2017, 34: 64-76. DOI: 10.1016/j.arr.2016.11.006.
24
Ke Y, Ming QZ. Iron misregulation in the brain: a primary cause of neurodegenerative disorders[J]. Lancet Neurol, 2003, 2(4): 246-253. DOI: 10.1016/s1474-4422(03)00353-3.
25
Fang E, Ann CN, Maréchal B, et al. Differentiating Parkinson's disease motor subtypes using automated volume-based morphometry incorporating white matter and deep gray nuclear lesion load[J]. J Magn Reson Imaging, 2020, 51(3): 748-756. DOI: 10.1002/jmri.26887.
26
Shao N, Yang J, Shang H. Voxelwise meta-analysis of gray matter anomalies in Parkinson variant of multiple system atrophy and Parkinson’s disease using anatomic likelihood estimation[J]. Neurosci Lett, 2015, 587: 79-86. DOI: 10.1016/j.neulet.2014.12.007.
27
Hagiwara A, Warntjes M, Hori M, et al. SyMRI of the brain: Rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement[J]. Invest Radiol, 2017, 52(10): 647-657. DOI: 10.1097/RLI.0000000000000365.
28
Mu SH, Xu M, Duan JX, et al. Localizing age-related changes in brain structure using voxel-based morphometry[J]. Neural Plasticity, 2017, 2017: 6303512. DOI: 10.1155/2017/6303512.
29
Tambasco N, Paolini Paoletti F, Chiappiniello A, et al. T2*-weighted MRI values correlate with motor and cognitive dysfunction in Parkinson's disease[J]. Neurobiol Aging, 2019, 8(80): 91-98. DOI: 10.1016/j.neurobiolaging.2019.04.005.
30
Minett T, Su L, Mak E, et al. Longitudinal diffusion tensor imaging changes in early Parkinson's disease: ICICLE-PD study[J]. J Neurology, 2018, 265(7): 1528-1539. DOI: 10.1007/s00415-018-8873-0.
31
Barkovich AJ. Concepts of myelin and myelination in neuroradiology[J]. AJNR Am J Neuroradiol, 2000, 21(6): 1099-1109.
32
Fatouros PP, Marmarou A, Kraft KA, et al. In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength[J]. Magn Reson Med, 1991, 17(2): 402-413. DOI: 10.1002/mrm.1910170212.
33
Gelman N, Ewing JR, Gorell JM, et al. Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents[J]. Magn Reson Med, 2001, 45(1): 71-79. DOI: 10.1002/1522-2594(200101)45:1<71::aid-mrm1011>3.0.co;2-2.
34
Lutti A, Dick F, Sereno MI, et al. Using high-resolution quantitative mapping of R1 as an index of cortical myelination[J]. NeuroImage, 2014, 93(Pt 2): 176-188. DOI: 10.1016/j.neuroimage.2013.06.005.
35
Brooks RA, Vymazal J, Goldfarb RB, et al. Relaxometry and magnetometry of ferritin[J]. Magn Reson Med, 1998, 40(2): 227-235. DOI: 10.1002/mrm.1910400208.
36
Andica C, Hagiwara A, Hori M, et al. Aberrant myelination in patients with sturge-weber syndrome analyzed using synthetic quantitative magnetic resonance imaging[J]. Neuroradiology, 2019, 61(9): 1055-1066. DOI: 10.1007/s00234-019-02250-9.
37
Nürnberger L, Gracien RM, Hok P, et al. Longitudinal changes of cortical microstructure in Parkinson's disease assessed with T1 relaxometry[J]. NeuroImage Clin, 2016, 21(13): 405-414. DOI: 10.1016/j.nicl.2016.12.025.
38
Mamere AE, Saraiva LA, Matos AL, et al. Evaluation of delayed neuronal and axonal damage secondary to moderate and severe traumatic brain injury using quantitative MR imaging techniques[J]. AJNR Am J Neuroradiol, 2009, 30(5): 947-952. DOI: 10.3174/ajnr.A1477.
39
Shen X, Yang H, Zhang D, et al. Iron concentration does not differ in blood but tends to decrease in cerebrospinal fluid in Parkinson's disease[J]. Front Neurosci, 2019, 26(13): 939. DOI: 10.3389/fnins.2019.00939.

PREV
NEXT Functional network connectivity analysis in sensorimotor area of Parkinson,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn