Share:
Share this content in WeChat
X
Investigation Reseach
A meta-analysis of diagnostic efficacy of four-dimensional magnetic resonance angiography in arteriovenous malformations
ZHAO Yongchao  ZOU Zhi  LI Yongli  DOU Shewei 

Cite this article as: Zhao YC, Zou Z, Li YL, et al. A meta-analysis of diagnostic efficacy of four-dimensional magnetic resonance angiography in arteriovenous malformations[J]. Chin J Magn Reson Imaging, 2021, 12(4): 57-61. DOI:10.12015/issn.1674-8034.2021.04.011.


[Abstract] Objective The objective of this study is to explore what effects does the four dimensional magnetic resonance angiography (4D-MRA) have in arteriovenous malformation (AVM) and the Spetzler-Martin grade of arteriovenous malformations by means of a meta-analysis. Materials andMethods In order to collect the relevant literatures and extract some relevant clinical data concerning the theme of the study, some database are utilized in this paper, like Searching PubMed, Embase, MEDLINE, OVID and CNKI, FMRS, Wanfang database or search platform. The time span was from January 2000 to November 2020. By drawing receiver operator characteristic (ROC) curve, the area under the curve (AUC) can be calculated so as to judge its diagnostic effect.Results A total of 9 studies were included, including 192 patients. The results showed that, taking digital subtraction angiography (DSA) as the gold standard, the AUC that 4D-MRA diagnoses AVM and the Spetzler-Martin grade of AVM was 0.927 and 0.920 respectively.Conclusions 4D-MRA has a significant diagnostic efficiency in the diagnosis of AVM and the Spetzler-Martin grade of AVM. As an important medical imaging examination technology and evaluating method, 4D-MRA can achieve the diagnostic efficiency in DSA in a great level, which can be used as a substitute for DSA to diagnose AVM in some cases.
[Keywords] four dimensional magnetic resonance angiography;four dimensional arterial spin labeling;Spetzler-Martin grade;arteriovenous malformation;digital subtraction angiography

ZHAO Yongchao1, 2   ZOU Zhi1, 2   LI Yongli1, 2   DOU Shewei1, 2*  

1 Henan University People's Hospital, Zhengzhou 450003, China

2 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China

Dou SW, E-mail: doushewei2000@163.com

Conflicts of interest   None.

This work was part of Medical Science and Technology Tackle Key Project of Henan Province (No. SB201901077).
Received  2020-12-04
Accepted  2021-02-02
DOI: 10.12015/issn.1674-8034.2021.04.011
Cite this article as: Zhao YC, Zou Z, Li YL, et al. A meta-analysis of diagnostic efficacy of four-dimensional magnetic resonance angiography in arteriovenous malformations[J]. Chin J Magn Reson Imaging, 2021, 12(4): 57-61. DOI:10.12015/issn.1674-8034.2021.04.011.

1
Obara M, Togao O, Beck GM, et al. Non-contrast enhanced 4D intracranial MR angiography based on pseudo-continuous arterial spin labeling with the keyhole and view-sharing technique[J]. Magn Reson Med, 2018, 80(2): 719-725. DOI: 10.1002/mrm.27074.
2
Shao X, Zhao Z, Russin J, et al. Quantification of intracranial arterial blood flow using noncontrast enhanced 4D dynamic MR angiography[J]. Magn Reson Med, 2019, 82(1): 449-459. DOI: 10.1002/mrm.27712.
3
Yu SL, Yan L, Yao Y, et al. Noncontrast dynamic MRA in intracranial arteriovenous malformation (AVM), comparison with time of flight (TOF) and digital subtraction angiography (DSA)[J]. Magn Reson Imaging, 2012, 30(6): 869-877. DOI: 10.1016/j.mri.2012.02.027.
4
Flores BC, See AP, Weiner GM, et al. Use of the apollo detachable-tip microcatheter for endovascular embolization of arteriovenous malformations and arteriovenous fistulas[J]. J Neurosurg, 2018, 130(3): 963-971. DOI: 10.3171/2017.9.JNS17397.
5
Tonetti DA, Gross BA, Atcheson KM, et al. The benefit of radiosurgery for ARUBA-eligible arteriovenous malformations: a practical analysis over an appropriate follow-up period[J]. J Neurosurg, 2018, 128(6): 1850-1854. DOI: 10.3171/2017.1.JNS162962.
6
Kondziolka D. Current and novel practice of stereotactic radiosurgery[J]. J Neurosurg, 2019, 130(6): 1789-1798. DOI: 10.3171/2019.2.JNS181712.
7
Madhugiri VS, Teo M, Westbroek EM, et al. Multimodal management of arteriovenous malformations of the basal ganglia and thalamus: factors affecting obliteration and outcome[J]. J Neurosurg, 2018, 131(2): 410-419. DOI: 10.3171/2018.2.JNS172511.
8
Speizler RF, Martin NA. A proposed grading system for arteriovenous malformations 1986[J]. J Neurosurg, 2008, 108(1): 186-193. DOI: 10.3171/JNS/2008/108/01/0186.
9
Wu EM, El Ahmadieh TY, McDougall CM, et al. Embolization of brain arteriovenous malformations with intent to cure: a systematic review[J]. J Neurosurg, 2019, 132(2): 388-399. DOI: 10.3171/2018.10.JNS181791.
10
Kukuk GM, Hadizadeh DR, Boström A, et al. Cerebral arteriovenous malformations at 3.0 T: intraindividual comparative study of 4D-MRA in combination with selective arterial spin labeling and digital subtraction angiography[J]. Invest Radiol, 2010, 45(3): 126-132. DOI: 10.1097/RLI.0b013e3181c7bcfe.
11
Xu JL, Shi D, Chen C, et al. Noncontrast-enhanced four-dimensional MR angiography for the evaluation of cerebral arteriovenous malformation: a preliminary trial[J]. J Magn Reson Imaging, 2011, 34(5): 1199-1205. DOI: 10.1002/jmri.22699.
12
Illies T, Forkert ND, Ries T, et al. Classification of cerebral arteriovenous malformations and intranidal flow patterns by color-encoded 4D-hybrid-MRA[J]. AJNR Am J Neuroradiol, 2013, 34(1): 46-53. DOI: 10.3174/ajnr.A3204.
13
Lim HK, Choi CG, Kim SM, et al. Detection of residual brain arteriovenous malformations after radiosurgery: diagnostic accuracy of contrast-enhanced four-dimensional MR angiography at 3.0 T[J]. Br J Radiol, 2012, 85(1016): 1064-1069. DOI: 10.1259/bjr/30618275.
14
Hadizadeh DR, Kukuk GM, Steck DT, et al. Noninvasive evaluation of cerebral arteriovenous malformations by 4D-MRA for preoperative planning and postoperative follow-up in 56 patients: comparison with DSA and intraoperative findings[J]. AJNR Am J Neuroradiol, 2012, 33(6): 1095-1101. DOI: 10.3174/ajnr.A2921.
15
Iryo Y, Hirai T, Nakamura M, et al. Evaluation of intracranial arteriovenous malformations with four-dimensional arterial-spin labeling-based 3-T magnetic resonance angiography[J]. J Comput Assist Tomogr, 2016, 40(2): 290-296. DOI: 10.1097/RCT.0000000000000346.
16
Cong F, Zhuo Y, Yu S, et al. Noncontrast-enhanced time-resolved 4D dynamic intracranial MR angiography at 7T: A feasibility study[J]. J Magn Reson Imaging, 2018, 48(1): 111-120. DOI: 10.1002/jmri.25923.
17
Hadizadeh DR, Gieseke J, Beck G, et al. View-sharing in keyhole imaging: Partially compressed central k-space acquisition in time-resolved MRA at 3.0 T[J]. Eur J Radiol, 2011, 80(2): 400-406. DOI: 10.1016/j.ejrad.2010.04.020.
18
Iryo Y, Hirai T, Nakamura M, et al. Evaluation of intracranial vasculatures in healthy subjects with arterial-spin-labeling-based 4D-MR angiography at 3T[J]. Magn Reson Med Sci, 2016, 15(3): 335-339. DOI: 10.2463/mrms.tn.2015-0081.
19
Suzuki Y, Helle M, Koken P, et al. Simultaneous acquisition of perfusion image and dynamic MR angiography using time-encoded pseudo-continuous ASL[J]. Magn Reson Med, 2018, 79(5): 2676-2684. DOI: 10.1002/mrm.26926.
20
Phellan R, Lindner T, Helle M, et al. Segmentation-based blood flow parameter refinement in cerebrovascular structures using 4D arterial spin labeling MRA[J]. IEEE Trans Biomed Eng, 2020, 67(7): 1936-1946. DOI: 10.1109/TBME.2019.2951082.
21
Griessenauer CJ, Miller JH, Agee BS, et al. Observer reliability of arteriovenous malformations grading scales using current imaging modalities[J]. J Neurosurg, 2014, 120(5): 1179-1187. DOI: 10.3171/2014.2.JNS131262.
22
Aboukaïs R, Vinchon M, Quidet M, et al. Reappearance of arteriovenous malformations after complete resection of ruptured arteriovenous malformations: true recurrence or false-negative early postoperative imaging result?[J]. J Neurosurg, 2017, 126(4): 1088-1093. DOI: 10.3171/2016.3.JNS152846.
23
Huo X, Jiang Y, Lv X, et al. Gamma knife surgical treatment for partially embolized cerebral arteriovenous malformations[J]. J Neurosurg, 2016, 124(3): 767-776. DOI: 10.3171/2015.1.JNS142711.
24
Madhugiri VS, Teo M, Vavao J, et al. Brainstem arteriovenous malformations: lesion characteristics and treatment outcomes[J]. J Neurosurg, 2018, 128(1): 126-136. DOI: 10.3171/2016.9.JNS16943.
25
Varadharajan S, Ramalingaiah AH, Saini J, et al. Precipitating hydrophobic injectable liquid embolization of intracranial vascular shunts: initial experience and technical note[J]. J Neurosurg, 2018, 129(5): 1217-1222. DOI: 10.3171/2017.6.JNS16447.
26
Cetin IA, Ates R, Dhaens J, et al. Retrospective analysis of linac-based radiosurgery for arteriovenous malformations and testing of the Flickinger formula in predicting radiation injury[J]. Strahlenther Onkol, 2012, 188(12): 1133-1138. DOI: 10.1007/s00066-012-0180-6.
27
Giurazza F, Corvino F, Cangiano G, et al. Transarterial embolization of peripheral high-flow arteriovenous malformation with ethylene vinyl alcohol copolymer (Onyx®): single-center 10-year experience[J]. Radiol Med, 2019, 124(2): 154-162. DOI: 10.1007/s11547-018-0948-6.

PREV 3D mDixon Quant based on compressed SENSE for quantitative study of lumbar vertebral body fat content
NEXT Quantitative analysis of tibiotalar articular cartilage changes by T2-mapping sequence after long-term physical training
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn