Share:
Share this content in WeChat
X
Review
Research progress of neurite direction dispersion and density imaging in Alzheimer's disease
WEI Zhihao  WANG Hong 

Cite this article as: Wei ZH, Wang H. Research progress of neurite direction dispersion and density imaging in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2021, 12(4): 103-105. DOI:10.12015/issn.1674-8034.2021.04.026.


[Abstract] Neurite direction dispersion and density imaging (NODDI) is a relatively practical diffusion magnetic resonance imaging technique that can be used to quantify the microstructure of nerve dendrites and axons, so as to obtain morphological information of nerve fibers. Compared with diffusion tensor imaging (DTI), which is widely used in clinical practice, these neurite indicators are more specific for the assessment of the microstructure of brain tissue. Alzheimer's disease (AD) is a degenerative disease of the central nervous system characterized by progressive cognitive dysfunction and memory loss. Therefore, NODDI technology can be used to estimate the microstructure of the nervous system of AD patients. The basic principles of NODDI technology and the research progress in AD are reviewed.

WEI Zhihao   WANG Hong*  

Imaging Center of the Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China

Wang H, E-mail: wangh_xj@163.com

Conflicts of interest   None.

This work was part of Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2019D01C227, 2020D01C191).
Received  2021-01-06
Accepted  2021-01-28
DOI: 10.12015/issn.1674-8034.2021.04.026
Cite this article as: Wei ZH, Wang H. Research progress of neurite direction dispersion and density imaging in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2021, 12(4): 103-105. DOI:10.12015/issn.1674-8034.2021.04.026.

1
Crous-Bou M, Minguillón C, Gramunt N, et al. Alzheimer's disease prevention: from risk factors to early intervention[J]. Alzheimers Res Ther, 2017, 9(1): 71.
2
Yan F, Li SR, Huang YQ, et al. Longitudinal study on dementia in an urban community of Beijing city in two decades[J] .Chin Mental Health J, 2008, 22(2): 110-113. DOI: 10.3321/j.issn:1000-6729.2008.02.011.
3
Tokuchi R, Hishikawa N, Sato K, et al. Differences between the behavioral and psychological symptoms of Alzheimer's disease and Parkinson's disease[J]. J Neurol Sci, 2016, 369: 278-282. DOI: 10.1016/j.jns.2016.08.053.
4
Briggs R, Kennelly SP, O'Neill D. Drug treatments in Alzheimer's disease[J]. Clin Med (Lond), 2016, 16(3): 247-253. DOI: 10.7861/clinmedicine.16-3-247.
5
Inui Y, Ito K, Kato T, et al. Longer-term investigation of the value of 18F-FDG-PET and magnetic resonance imaging for predicting the conversion of mild cognitive impairment to Alzheimer's disease: A multicenter study[J]. J Alzheimers Dis, 2017, 60(3): 877-887. DOI: 10.3233/JAD-170395.
6
Bredesen DE, Amos EC, Canick J, et al. Reversal of cognitive decline in Alzheimer's disease[J]. Aging (Albany NY), 2016, 8(6): 1250-1258. DOI: 10.18632/aging.100981.
7
Kozin SA, Makarov AA. The convergence of Alzheimer's disease pathogenesis concepts[J]. Mol Biol (Mosk), 2019, 53(6): 1020-1028. DOI: 10.1134/S0026898419060107.
8
Lane CA, Hardy J, Schott JM. Alzheimer's disease[J]. Eur J Neurol, 2018, 25(1): 59-70. DOI: 10.1111/ene.13439.
9
Mueggler T, Meyer-Luehmann M, Rausch M, et al. Restricted diffusion in the brain of transgenic mice with cerebral amyloidosis[J]. Eur J Neurosci, 2004, 20(3): 811-817. DOI: 10.1111/j.1460-9568.2004.03534.x.
10
Sadleir KR, Kandalepas PC, Nicholson DA, et al. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer's disease[J]. Acta Neuropathol, 2016, 132(2): 235-256. DOI: 10.1007/s00401-016-1558-9.
11
Zhang H, Zheng Y. β amyloid hypothesis in Alzheimer's disease: Pathogenesis, prevention, and management[J]. Acta Acad Med Sinic, 2019, 41(5): 702-708. DOI: 10.3881/j.issn.1000-503X.10875.
12
Skaper SD. Alzheimer's disease and amyloid: culprit or coincidence?[J]. Int Rev Neurobiol, 2012, 102: 277-316. DOI: 10.1016/B978-0-12-386986-9.00011-9.
13
Sone D, Shigemoto Y, Ogawa M, et al. Association between neurite metrics and tau/inflammatory pathology in Alzheimer's disease[J]. Alzheimers Dement (Amst), 2020, 12(1): e12125. DOI: 10.1002/dad2.12125.
14
Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis[J]. JAMA Neurol, 2014, 71(4): 505-508. DOI: 1001/jamaneurol.2013.5847.
15
Huang HC, Jiang ZF. Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer's disease[J]. J Alzheimers Dis, 2009, 16(1): 15-27. DOI: 10.3233/JAD-2009-0960.
16
Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer's disease[J]. Cell Mol Neurobiol, 2015, 35(1): 71-83. DOI: 10.1007/s10571-014-0101-6.
17
Sanchez-Mejias E, Navarro V, Jimenez S, et al. Soluble phospho-tau from Alzheimer's disease hippocampus drives microglial degeneration[J]. Acta Neuropathol, 2016, 132(6): 897-916. DOI: 10.1007/s00401-016-1630-5.
18
Minter MR, Taylor JM, Crack PJ. The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease[J]. J Neurochem, 2016, 136(3): 457-474. DOI: 10.1111/jnc.13411.
19
Rajendran L, Paolicelli RC. Microglia-mediated synapse loss in Alzheimer's disease[J]. J Neurosci, 2018, 38(12): 2911-2919. DOI: 10.1523/JNEUROSCI.1136-17.2017.
20
Evans SL, Dowell NG, Prowse F, et al. Mid age APOE ε4 carriers show memory-related functional differences and disrupted structure-function relationships in hippocampal regions[J]. Sci Rep, 2020, 10(1): 3110. DOI: 10.1038/s41598-020-59272-0.
21
Slattery CF, Zhang J, Paterson RW, et al. ApoE influences regional white-matter axonal density loss in Alzheimer's disease[J]. Neurobiol Aging, 2017, 57: 8-17. DOI: 10.1016/j.neurobiolaging.2017.04.021.
22
Mole JP, Fasano F, Evans J, et al. APOE-ε4-related differences in left thalamic microstructure in cognitively healthy adults[J]. Sci Rep, 2020, 10(1): 19787. DOI: 10.1038/s41598-020-75992-9.
23
Metzler-Baddeley C, Mole JP, Leonaviciute E, et al. Sex-specific effects of central adiposity and inflammatory markers on limbic microstructure[J]. Neuroimage, 2019, 189: 793-803. DOI: 10.1016/j.neuroimage.2019.02.007.
24
Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies[J]. Cell, 2012, 148(6): 1204-1222. DOI: 10.1016/j.cell.2012.02.040.
25
Hoeijmakers L, Ruigrok SR, Amelianchik A, et al. Early-life stress lastingly alters the neuroinflammatory response to amyloid pathology in an Alzheimer's disease mouse model[J]. Brain Behav Immun, 2017, 63: 160-175. DOI: 10.1016/j.bbi.2016.12.023.
26
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
27
Zhang H, Schneider T, Wheeler-Kingshott CA, et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain[J]. Neuroimage, 2012, 61(4): 1000-1016. DOI: 10.1016/j.neuroimage.2012.03.072.
28
Song YK, Chu JP. The technical principle and clinical research progress of neurite direction dispersion and density imaging[J]. Diagn Imaging & Inter Radiol, 2017, 26(2): 157-161.
29
Colon-Perez LM, Ibanez KR, Suarez M, et al. Neurite orientation dispersion and density imaging reveals white matter and hippocampal microstructure changes produced by Interleukin-6 in the TgCRND8 mouse model of amyloidosis[J]. Neuroimage, 2019, 202: 116138. DOI: 10.1016/j.neuroimage.2019.116138.
30
Colgan N, Siow B, O'Callaghan JM, et al. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease[J]. Neuroimage, 2016, 125: 739-744. DOI: 10.1016/j.neuroimage.2015.10.043.
31
Parker TD, Slattery CF, Zhang J, et al. Cortical microstructure in young onset Alzheimer's disease using neurite orientation dispersion and density imaging[J]. Hum Brain Mapp, 2018, 39(7): 3005-3017. DOI: 10.1002/hbm.24056.
32
Vogt NM, Hunt JF, Adluru N, et al. Cortical microstructural alterations in mild cognitive impairment and Alzheimer's disease dementia[J]. Cereb Cortex, 2020, 30(5): 2948-2960. DOI: 10.1093/cercor/bhz286.
33
Fu X, Shrestha S, Sun M, et al. Microstructural white matter alterations in mild cognitive impairment and Alzheimer's disease: Study based on neurite orientation dispersion and density imaging (NODDI)[J]. Clin Neuroradiol, 2020, 30(3): 569-579. DOI: 10.1007/s00062-019-00805-0.

PREV Research progress of neurite direction diffusion and density imaging for glioma classification
NEXT Research progresses of structural and functional magnetic resonance imaging in intelligence
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn