Share:
Share this content in WeChat
X
Experience Exchanges
Combination of 3D-pCASL and diffusion kurtosis imaging in the diagnosis of subcortical arteriosclerotic encephalopathy
HE Xiaoyi  SHI Hao  WANG Junying 

Cite this article as: He XY, Shi H, Wang JY. Combination of 3D-pCASL and diffusion kurtosis imaging in the diagnosis of subcortical arteriosclerotic encephalopathy[J]. Chin J Magn Reson Imaging, 2021, 12(5): 60-64, 89. DOI:10.12015/issn.1674-8034.2021.05.013.


[Abstract] Objective To explore the diagnostic value of diffusion kurtosis imaging (DKI) and 3D pseudo continuous arterial spin labeling (3D-pCASL) technologies in subcortical arteriosclerotic encephalopathy (SAE). Materials andMethods Regular MRI, 3D-pCASL and DKI scans were performed on 35 clinically diagnosed SAE patients and 33 control groups. The fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), radial diffusivity (Dr), anisotropy fraction of kurtosis (FAk), mean kurtosis (MK), axial kurtosis (Ka) and radial kurtosis (Kr) were measured in three groups including the lesion areas of white matter (WM) in SAE group (frontal and occipital WM around the horns of bilateral ventricle), normal WM area of SAE group (normal WM adjacent to the lesion area, the genu/splenium of the corpus callosum, and temporal WM) and ​​the control group. The CBF value was measured in SAE group (lesion areas, genu/splenium of the corpus callosum, and temporal WM) and the control group. These data acquired were statistically analyzed and the correlations between DKI/ASL derived parameters value and Mini-mental State Examination (MMSE) score of SAE patients were studied. The receiver operating characteristic (ROC) was used to analysis the diagnostic value in SAE by these two technologies.Results Compared with the control group, the SAE group had a significant decline in the values of CBF, FA and kurtosis parameters in all WM lesion areas, and the values of diffusion parameters increased considerably (P<0.05). The significant changes, similar to WM lesions of SAE, were shown in some values of DKI parameters of the normal control group. Additionally, for SAE patients, MMSE showed positive correlation with CBF in parietal/temporal WM (r=0.496/0.392, P=0.003/0.020), and positively correlated with FA and Kr values of frontal WM around the horns of bilateral ventricle (r=0.488/0.437, P=0.003/0.009). Finally, FA in GCC, CBF in SCC, and the combined FA/MD/Dr/CBF in temporal WM showed high accuracy (AUCs 0.957/0.946/0.986) in distinguishing SAE patients from controls.Conclusions For SAE patients, the DKI and 3D-pCASL can sensitively detect the potential changes of brain microstructure with normal performance in regular MRI examinations, and these two techniques can detect the progression of cognitive dysfunction for SAE. Thus, DKI and 3D-ASL imaging were proven to effectively improve the diagnosis of SAE.
[Keywords] brain structure;subcortical arteriosclerotic encephalopathy;Binswanger's disease;diffusion kurtosis imaging;pseudo continuous arterial spin labeling

HE Xiaoyi1, 2   SHI Hao1*   WANG Junying1  

1 Department of Radiology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan 250014, China

2 Shandong First Medical University, Jinan 250062, China

Shi H, E-mail: hansenschie@126.com

Conflicts of interest   None.

Received  2020-12-15
Accepted  2021-03-25
DOI: 10.12015/issn.1674-8034.2021.05.013
Cite this article as: He XY, Shi H, Wang JY. Combination of 3D-pCASL and diffusion kurtosis imaging in the diagnosis of subcortical arteriosclerotic encephalopathy[J]. Chin J Magn Reson Imaging, 2021, 12(5): 60-64, 89. DOI:10.12015/issn.1674-8034.2021.05.013.

1
Barry Erhardt E, Pesko JC, Prestopnik J, et al. Biomarkers identify the Binswanger type of vascular cognitive impairment[J]. J Cerebral Blood Flow Metabol, 2019, 39(8): 1602-1612. DOI: 10.1177/0271678x18762655.
2
Rosenberg GA, Wallin A, Wardlaw JM, et al. Consensus statement for diagnosis of subcortical small vessel disease[J]. Int J Cerebrovas Dis, 2016, 24(6): 481-496.
3
Rosenberg GA. Binswanger's disease: biomarkers in the inflammatory form of vascular cognitive impairment and dementia[J]. J Neurochemistry, 2018, 144(5): 634-643. DOI: 10.1111/jnc.14218.
4
Huisa BN, Rosenberg GA. Binswanger's disease: toward a diagnosis agreement and therapeutic approach[J]. Exp Rev Neurotherap, 2014, 14(10): 1203-1213. DOI: 10.1586/14737175.2014.956726.
5
Li C, Lan C, Zhang X, et al. Evaluation of diffusional kurtosis imaging in sub-acute ischemic stroke: comparison with rehabilitation treatment effect[J]. Cell Transplant, 2019, 28(8): 1053-1061. DOI: 10.1177/0963689719837919.
6
Zhong G, Zhang R, Jiaerken Y, et al. Better correlation of cognitive function to white matter integrity than to blood supply in subjects with leukoaraiosis[J]. Front Aging Neurosci, 2017, 9: 185. DOI: 10.3389/fnagi.2017.00185.
7
Caplan LR, Gomes JA. Binswanger disease: an update[J]. J Neurol Sci, 2010, 299(1-2): 9-10. DOI: 10.1016/j.jns.2010.08.041.
8
Nucci C, Garaci F, Altobelli S, et al. Diffusional kurtosis imaging of white matter degeneration in glaucoma[J]. J Clin Med, 2020, 9(10): 3122. DOI: 10.3390/jcm9103122.
9
Qiao PG, Cheng X, Li GJ, et al. MR diffusional kurtosis imaging-based assessment of brain microstructural changes in patients with moyamoya disease before and after revascularization[J]. AJNR Am J Neuroradiol, 2020, 41(2): 246-254. DOI: 10.3174/ajnr.A6392.
10
Wang JJ, Lin WY, Lu CS, et al. Parkinson disease: diagnostic utility of diffusion kurtosis imaging[J]. Radiology, 2011, 261(1): 210-217. DOI: 10.1148/radiol.11102277.
11
Gong NJ, Wong CS, Chan CC, et al. Correlations between microstructural alterations and severity of cognitive deficiency in Alzheimer's disease and mild cognitive impairment: a diffusional kurtosis imaging study[J]. Magn Reson Imaging, 2013, 31(5): 688-694. DOI: 10.1016/j.mri.2012.10.027.
12
Kamagata K, Andica C, Hatano T, et al. Advanced diffusion magnetic resonance imaging in patients with Alzheimer's and Parkinson's diseases[J]. Neural Regen Res, 2020, 15(9): 1590-1600. DOI: 10.4103/1673-5374.276326.
13
Hao Q, Ding SX, Li DX, et al. Study on the correlation between body dysfunction and the degree of pyramidal tract injury in acute ischemic stroke by using diffusion tensor imaging technology[J]. Chin J Magn Reson Imaging, 2021, 12(1): 3-8, 20. DOI: 10.12015/issn.1674-8034.2021.01.002.
14
Yang TF, Huang ZK, Long LL, et al. Diffusional kurtosis imaging value for assessment of liver cancer and tumoral cell invasion of peritumoral zone[J]. Chin J Radiol, 2017, 51(3): 174-177. DOI: 10.3760/cma.j.issn.1005?1201.2017.03.004.
15
Haopeng P, Xuefei D, Yan R, et al. Diffusion kurtosis imaging differs between primary central nervous system lymphoma and high-grade glioma and is correlated with the diverse nuclear-to-cytoplasmic ratio: a histopathologic, biopsy-based study[J]. Eur Radiol, 2020, 30(4): 2125-2137. DOI: 10.1007/s00330-019-06544-7.
16
Soldozy S, Galindo J, Snyder H, et al. Clinical utility of arterial spin labeling imaging in disorders of the nervous system[J]. Neurosurgical focus, 2019, 47(6): E5. DOI: 10.3171/2019.9.Focus19567.
17
Haller S, Zaharchuk G, Thomas DL, et al. Arterial spin labeling perfusion of the brain: emerging clinical applications[J]. Radiology, 2016, 281(2): 337-356. DOI: 10.1148/radiol.2016150789.
18
Jung WB, Mun CW, Kim YH, et al. Cortical atrophy, reduced integrity of white matter and cognitive impairment in subcortical vascular dementia of Binswanger type[J]. Psychiatry Clin Neurosci, 2014, 68(12): 821-832. DOI: 10.1111/pcn.12196.
19
Lee WJ, Han CE, Aganj I, et al. Distinct patterns of rich club organization in alzheimer's disease and subcortical vascular dementia: a white matter network study[J]. J Alzheimer's Dis, 2018, 63(3): 977-987. DOI: 10.3233/jad-180027.
20
Zheng X, Li XH, Zhang Y. The diagnostic value and correlation study between 1H-MRS and DTI in subcortical arteriosclerotic encephalopathy[J]. J Pract Radiol, 2020, 36(1): 13-16. DOI: 10.3969/j.issn.1002-1671.2020.01.004.
21
Zhou SH, Liang RQ, Shen XH. Effectof MR diffusion tensor imaging in subcortical ischemic vascular dementia with cognitive impairment on corpus callousm and cingulate bundles[J]. Chin J Pract Nervous Dis, 2017, 20(10): 9-12. DOI: 10.3969/j.issn.1673-5110.2017.10.003.
22
Cheung MM, Hui ES, Chan KC, et al. Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study[J]. Neuroimage, 2009, 45(2): 386-392. DOI: 10.1016/j.neuroimage.2008.12.018.
23
Xu S, Ye D, Lian T, et al. Assessment of severity of leukoaraiosis: a diffusional kurtosis imaging study[J]. Clin Imaging, 2016, 40(4): 732-738. DOI: 10.1016/j.clinimag.2016.02.018.
24
Caplan LR, Schoene WC. Clinical features of subcortical arteriosclerotic encephalopathy (Binswanger disease)[J]. Neurology, 1978, 28(12): 1206-1215. DOI: 10.1212/wnl.28.12.1206.
25
Chen NK, Guidon A, Chang HC, et al. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)[J]. Neuroimage, 2013, 72: 41-47. DOI: 10.1016/j.neuroimage.2013.01.038.

PREV Synthetic MRI of the hippocampal application value of normal adults
NEXT Value of MRI and cerebrospinal fluid examination in evaluating the curative effect of anti-tuberculosis treatment on patients with intracranial tuberculosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn