Share:
Share this content in WeChat
X
Review
Application of DTI and fMRI in the network connection of the pedunculopontine nucleus in Parkinson disease
FENG Qin  BAI Yan  CHEN Hanlin  ZHANG Menghuan  WANG Mengke  WANG Meiyun 

Cite this article as: Feng Q, Bai Y, Chen HL, et al. Application of DTI and fMRI in the network connection of the pedunculopontine nucleus in Parkinson disease[J]. Chin J Magn Reson Imaging, 2021, 12(5): 96-98, 106. DOI:10.12015/issn.1674-8034.2021.05.023.


[Abstract] Falls and gait disorders are the main causes of disability in Parkinson's disease, and its response to drug therapy and subthalamic stimulation is usually poor, which seriously affect the quality of life. As a part of mesencephalic locomotor region and reticular activating system, the pedunculopontine nucleus is closely connected with the basal ganglia, thalamus, cerebellum and other brain regions, and participates in posture and gait control. Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) can reflect the structure of white matter fiber tracts and the function of brain regions, who well assess the role of the pedunculopontine nucleus in postural instability/gait difficulty. This article will review the application of DTI and fMRI in the network connection of the pedunculopontine nucleus in Parkinson's patients.
[Keywords] Parkinson disease;the pedunculopontine nucleus;diffusion tensor imaging;functional magnetic resonance imaging;brain networks

FENG Qin1, 2   BAI Yan1, 2   CHEN Hanlin3   ZHANG Menghuan1, 2   WANG Mengke1, 2   WANG Meiyun1, 2*  

1 Department of Medical Imaging, Zhengzhou University People's Hospital ,Henan Province People's Hospital, Zhengzhou 450003, China

2 Henan Provincial People's Hospital, Henan Key Laboratory of Neurological Imaging, Zhengzhou 450003, China

3 Fuzhou International Travel Health Care Center, Fuzhou 350001, China

Wang MY, E-mail: mywang@ha.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS This article is supported by the National Key R&D Program of China (No. 2017YFE0103600). National Natural Science Foundation of China (No. 81720108021). Zhongyuan Thousand Talents Plan Project (No. ZYQR201810117). Scientific and Technological Research Project of Henan Province (No. 182102310496). Medical Science and Technology Research Project of Henan Province (No. 2018020403).
Received  2020-11-17
Accepted  2021-03-25
DOI: 10.12015/issn.1674-8034.2021.05.023
Cite this article as: Feng Q, Bai Y, Chen HL, et al. Application of DTI and fMRI in the network connection of the pedunculopontine nucleus in Parkinson disease[J]. Chin J Magn Reson Imaging, 2021, 12(5): 96-98, 106. DOI:10.12015/issn.1674-8034.2021.05.023.

1
Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology[J]. Clin Geriatr Med, 2020, 36(1): 1-12. DOI: 10.1016/j.cger.2019.08.002.
2
Miller DB, O'callaghan JP. Biomarkers of Parkinson's disease: present and future[J]. Metabolism, 2015, 64(3): S40-S46. DOI: 10.1016/j.metabol.2014.10.030.
3
Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms[J]. Free Radic Biol Med, 2013, 62(5): 132-144. DOI: 10.1016/j.freeradbiomed.2013.01.018.
4
Eross L, Riley J, Levy EI, et al. Neuroimaging of deep brain stimulation[J]. Neurol Clin, 2020, 38(1): 201-214. DOI: 10.1016/j.ncl.2019.09.005.
5
Virmani T, Urbano FJ, Bisagno V, et al. The pedunculopontine nucleus: From posture and locomotion to neuroepigenetics[J]. AIMS Neurosci, 2019, 6(4): 219-230. DOI: 10.3934/Neuroscience.2019.4.219.
6
Stefani A, Grandi LC, Galati S, et al. Deep brain stimulation of the pedunculopontine nucleus modulates subthalamic pathological oscillations[J]. Neurobiol Dis, 2019, 128: 49-52. DOI: 10.1016/j.nbd.2018.11.006.
7
Mena-Segovia J, Bolam JP. Rethinking the pedunculopontine nucleus: from cellular organization to function[J]. Neuron, 2017, 94(1): 7-18. DOI: 10.1016/j.neuron.2017.02.027.
8
Garcia-Rill E, Saper CB, Rye DB, et al. Focus on the pedunculopontine nucleus[J]. Clin Neurophysiol, 2019, 130(6): 925-940. DOI: 10.1016/j.clinph.2019.03.008.
9
Baksa B, Kovács, A, Bayasgalan T, et al. Characterization of functional subgroups among genetically identified cholinergic neurons in the pedunculopontine nucleus[J]. Cell Mol Life Sci, 2019, 76(14): 2799-2815. DOI: 10.1007/s00018-019-03025-4.
10
Nowacki A, Galati S, Ai-Schlaeppi J, et al. Pedunculopontine nucleus: an integrative view with implications on deep brain stimulation: sciencedirect[J]. Neurobiol Dis, 2019, 128(C): 75-85. DOI: 10.1016/j.nbd.2018.08.015.
11
Chambers NE, Lanza K, Bishop C. Pedunculopontine nucleus degeneration contributes to both motor and non-motor symptoms of Parkinson's disease[J]. Front Pharmacol, 2019, 10: 1494. DOI: 10.3389/fphar.2019.01494.
12
Vitale F, Capozzo A, Mazzone P, et al. Neurophysiology of the pedunculopontine tegmental nucleus[J]. Neurobiol Dis, 2019, 128: 19-30. DOI: 10.1016/j.nbd.2018.03.004.
13
Ricciardi L, Sarchioto M, Morgante F. Role of pedunculopontine nucleus in sleep-wake cycle and cognition in humans: a systematic review of DBS studies[J]. Neurobiol Dis, 2018: 53-58. DOI: 10.1016/j.nbd.2019.01.022.
14
Gut NK, Winn P. The pedunculopontine tegmental nucleus: a functional hypothesis from the comparative literature[J]. Mov Disord, 2016, 31(5): 615-624. DOI: 10.1002/mds.26556.
15
Geng X, Wang X, He F, et al. Spike and local field synchronization between the pedunculopontine nucleus and primary motor cortex in a rat model of Parkinson's disease[J]. Neuroscience, 2019, 404: 470-483. DOI: 10.1016/j.neuroscience.2019.01.044.
16
Pienaar IS, Gartside SE, Sharma P, et al. Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson's disease[J]. Mol Neurodegener, 2015, 10(1): 47. DOI: 10.1186/s13024-015-0044-5.
17
Yu K, Ren Z, Guo S, et al. Effects of pedunculopontine nucleus deep brain stimulation on gait disorders in Parkinson's disease: a Meta-analysis of the literature[J]. Clin Neurol Neurosurg, 2020, 198: 106108. DOI: 10.1016/j.clineuro.2020.106108.
18
Bergamino M, Keeling EG, Mishra VR, et al. Assessing white matter pathology in early-stage Parkinson disease using diffusion MRI: a systematic review[J]. Front Neurol, 2020, 11: 314. DOI: 10.3389/fneur.2020.00314.
19
Peterson DS, Fling BW, Mancini M, et al. Dual-task interference and brain structural connectivity in people with Parkinson's disease who freeze[J]. J Neurol Neurosurg Psychiatry, 2015, 86(7): 786-792. DOI: 10.1136/jnnp-2014-308840.
20
Youn J, Lee JM, Kwon H, et al. Alterations of mean diffusivity of pedunculopontine nucleus pathway in Parkinson's disease patients with freezing of gait[J]. Parkinsonism Relat Disord, 2015, 21(1): 12-17. DOI: 10.1016/j.parkreldis.2014.10.003.
21
Vercruysse S, Leunissen I, Vervoort G, et al. Microstructural changes in white matter associated with freezing of gait in Parkinson's disease[J]. Mov Disord, 2015, 30(4): 567-576. DOI: 10.1002/mds.26130.
22
Alho A, Hamani C, Alho EJL, et al. Magnetic resonance diffusion tensor imaging for the pedunculopontine nucleus: proof of concept and histological correlation[J]. Brain Struct Funct, 2017, 222(6): 2547- 2558. DOI: 10.1007/s00429-016-1356-0.
23
Craig CE, Jenkinson NJ, Brittain JS, et al. Pedunculopontine nucleus microstructure predicts postural and gait symptoms in Parkinson's disease[J]. Mov Disord, 2020, 35(7): 1199-1207. DOI: 10.1002/mds.28051.
24
Albin RL, Surmeier DJ, Tubert C, et al. Targeting the pedunculopontine nucleus in Parkinson's disease: time to go back to the drawing board[J]. Mov Disord, 2018, 33(12): 1871-1875. DOI: 10.1002/mds.27540.
25
Mestre TA, Sidiropoulos C, Hamani C, et al. Long-term double-blinded unilateral pedunculopontine area stimulation in Parkinson's disease[J]. Mov Disord, 2016, 31(10): 1570-1574. DOI: 10.1002/mds.26710.
26
Pinto S, Ferraye M, Espesser R, et al. Stimulation of the pedunculopontine nucleus area in Parkinson's disease: effects on speech and intelligibility[J]. Brain, 2014, 137(10): 2759-2772. DOI: 10.1093/brain/awu209.
27
Thevathasan W, Debu B, Aziz T, et al. Pedunculopontine nucleus deep brain stimulation in Parkinson's disease: a clinical review[J]. Mov Disord, 2018, 33(1): 10-20. DOI: 10.1002/mds.27098.
28
Henssen D, Kuppens D, Meijer FJA, et al. Identification of the pedunculopontine nucleus and surrounding white matter tracts on 7T diffusion tensor imaging, combined with histological validation[J]. Surg Radiol Anat, 2019, 41(2): 187-196. DOI: 10.1007/s00276-018-2120-3.
29
Yang J, Gates KM, Molenaar P, et al. Neural changes underlying successful second language word learning: an fMRI study[J]. J Neurolinguistics, 2015, 33: 29-49. DOI: 10.1016/j.jneuroling.2014.09.004.
30
Wang J, Wei M, Cheng OM. Advance of magnetic resonance imaging in Parkinson's disease subtypes[J]. Chin J Magn Reson Imaging, 2018, 9(11): 848-852. DOI: 10.12015/issn.1674-8034.2018.11.010.
31
Wang M, Jiang S, Yuan Y, et al. Alterations of functional and structural connectivity of freezing of gait in Parkinson's disease[J]. J Neurol, 2016, 263(8): 1583-1592. DOI: 10.1007/s00415-016-8174-4.
32
Cai J, Lee S, Ba F, et al. Galvanic vestibular stimulation (GVS) augments deficient pedunculopontine nucleus (PPN) connectivity in mild Parkinson's disease: fMRI effects of different stimuli[J]. Front Neurosci, 2018, 12: 101. DOI: 10.3389/fnins.2018.00101.
33
Barbieri FA, Marchal V, Sellers J, et al. Deep brain activation patterns involved in virtual gait without and with a doorway: an fMRI study[J]. PLoS One, 2019, 14(10): e0223494. DOI: 10.1371/journal.pone.0223494.
34
Potvin-Desrochers A, Mitchell T, Gisiger T, et al. Changes in resting-state functional connectivity related to freezing of gait in Parkinson's disease[J]. Neuroscience, 2019, 418: 311-317. DOI: 10.1016/j.neuroscience.2019.08.042.
35
Khalighinejad N, Priestley L, Jbabdi S, et al. Human decisions about when to act originate within a basal forebrain–nigral circuit[J]. Proc Natl Acad Sci USA, 2020, 117(21): 11799-11810. DOI: 10.1073/pnas.1921211117.
36
Jin ZY, Su BY, Xue HD. The technical advances and clinical application of MR-guided focused ultrasound surgery[J]. Chin J Magn Reson Imaging, 2014, 5(S1): 26-30. DOI: 10.3969/j.issn.1674-8034.2014.05.S1.006.

PREV A case of prostate non-Hodgkin lymphoma MRI misdiagnosed as metastatic tumor
NEXT Research progress of functional magnetic resonance imaging in minimal hepatic encephalopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn