Share:
Share this content in WeChat
X
Review
Progress in quantitative assessment of liver fibrosis and cirrhosis by MRI
LIU Guanchen  LIU Pengfei 

Cite this article as: Liu GC, Liu PF. Progress in quantitative assessment of liver fibrosis and cirrhosis by MRI[J]. Chin J Magn Reson Imaging, 2021, 12(5): 114-117. DOI:10.12015/issn.1674-8034.2021.05.028.


[Abstract] Liver fibrosis is a reversible wound repair response. Early detection and staging of liver fibrosis can reduce its risk. As the end stage of liver fibrosis, cirrhosis will cause a series of serious complications if not timely and effective intervention. For the assessment of liver fibrosis and cirrhosis, MRI examination can reflect the changes of liver more directly and comprehensively than pathological and blood biochemical indexes. This article mainly reviews the technical principles of diffusion-weighted imaging (DWI), gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) enhanced imaging, magnetic resonance elastography (MRE) and the research progress in the evaluation of liver fibrosis and cirrhosis.
[Keywords] liver fibrosis;liver cirrhosis;magnetic resonance imaging;gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid;quantitative evaluation

LIU Guanchen   LIU Pengfei*  

Department of MRI, the First Hospital of Harbin Medical University, Harbin 150001, China

Liu PF, Email: Pfeiliu@hotmail.com

Conflicts of interest   None.

Received  2020-12-12
Accepted  2021-03-25
DOI: 10.12015/issn.1674-8034.2021.05.028
Cite this article as: Liu GC, Liu PF. Progress in quantitative assessment of liver fibrosis and cirrhosis by MRI[J]. Chin J Magn Reson Imaging, 2021, 12(5): 114-117. DOI:10.12015/issn.1674-8034.2021.05.028.

1
Dhar D, Baglieri J, Kisseleva T, et al. Mechanisms of liver fibrosis and its role in liver cancer[J]. Exp Biol Med (Maywood), 2020, 245(2): 96-108. DOI: 10.1177/1535370219898141.
2
Li T, Che-Nordin N, Wáng YXJ, et al. Intravoxel incoherent motion derived liver perfusion/diffusion readouts can be reliable biomarker for the detection of viral hepatitis B induced liver fibrosis[J]. Quant Imaging Med Surg, 2019, 9(3): 371-385. DOI: 10.21037/qims.2019.02.11.
3
Serai SD, Trout AT, Miethke A, et al. Putting it all together: established and emerging MRI techniques for detecting and measuring liver fibrosis[J]. Pediatr Radiol, 2018, 48(9): 1256-1272. DOI: 10.1007/s00247-018-4083-2.
4
Xu XY, Ding HG, Li WG, et al. Guidelines for liver cirrhosis[J]. J Clin Hepatol, 2019, 35(11): 2408-2405.
5
Sharma S, Khalili K, Nguyen GC. Non-invasive diagnosis of advanced fibrosis and cirrhosis[J]. World J Gastroenterol, 2014, 20(45): 16820- 16830. DOI: 10.3748/wjg.v20.i45.16820.
6
Ren H, Liu Y, Lu J, et al. Evaluating the clinical value of MRI multi-model diffusion-weighted imaging on liver fibrosis in chronic hepatitis B patients. Abdom Radiol (NY), 2020. [ DOI: ] DOI: 10.1007/s00261-020-02806-x.
7
Xu J, Wang X, Jin ZY. Research progress of enhanced MRI quantitative evaluation of liver fibrosis and liver function[J]. Chin J Radiol, 2016, 50(12): 994-996. DOI: 10.3760/cma.j.issn.1005-1201.2016.12.023.
8
Shenoy-Bhangle A, Baliyan V, Kordbacheh H, et al. Diffusion weighted magnetic resonance imaging of liver: Principles, clinical applications and recent updates[J]. World J Hepatol, 2017, 9(26): 1081-1091. DOI: 10.4254/wjh.v9.i26.1081.
9
Pan XH, Guo SL, Lin LL, et al. The progress of liver fibrosis quantitative evaluation by MRI[J]. Chin J Magn Reson Imaging, 2018, 9(9): 699-704. DOI: 10.12015/issn.1674-8034.2018.09.011.
10
Ni P, Lin Y, Zhong Q, et al. Technical advancements and protocol optimization of diffusion-weighted imaging (DWI) in liver[J]. Abdom Radiol (NY), 2016, 41(1): 189-202. DOI: 10.1007/s00261-015-0602-x.
11
Li CX, Liu HT, Li X, et al. Application of intravoxel incoherent motion- diffusion weighted imaging MR in the evaluation of liver function[J]. Chin J Gastroenterol Hepatol, 2019, 28(12): 1345-1349. DOI: CNKI:SUN:WCBX.0.2019-12-007.
12
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
13
Wáng YXJ, Deng M, Li YT, et al. A combined use of intravoxel incoherent motion MRI parameters can differentiate early-stage hepatitis-b fibrotic livers from healthy livers[J]. SLAS Technol, 2018, 23(3): 259-268. DOI: 10.1177/2472630317717049.
14
Lu PX, Huang H, Yuan J, et al. Decreases in molecular diffusion, perfusion fraction and perfusion-related diffusion in fibrotic livers: a prospective clinical intravoxel incoherent motion MR imaging study[J]. PLoS One, 2014, 9(12): e113846. DOI: 10.1371/journal.pone.0113846.
15
Chow AM, Gao DS, Fan SJ, et al. Liver fibrosis: an intravoxel incoherent motion (IVIM) study[J]. J Magn Reson Imaging, 2012, 36(1): 159-167. DOI: 10.1002/jmri.23607.
16
Tokgöz Ö, Unal I, Turgut GG, et al. The value of liver and spleen ADC measurements in the diagnosis and follow up of hepatic fibrosis in chronic liver disease[J]. Acta Clin Belg, 2014, 69(6): 426-432. DOI: 10.1179/2295333714Y.0000000062.
17
Shin MK, Song JS, Hwang SB, et al. Liver fibrosis assessment with diffusion-weighted imaging: value of liver apparent diffusion coefficient normalization using the spleen as a reference organ[J]. Diagnostics (Basel), 2019, 9(3): 107. DOI: 10.3390/diagnostics9030107.
18
Besheer T, Elalfy H, Abd El-Maksoud M, et al. Diffusion-weighted magnetic resonance imaging and micro-RNA in the diagnosis of hepatic fibrosis in chronic hepatitis C virus[J]. World J Gastroenterol, 2019, 25(11): 1366-1377. DOI: 10.3748/wjg.v25.i11.1366.
19
Annet L, Peeters F, Abarca-Quinones J, et al. Assessment of diffusion-weighted MR imaging in liver fibrosis[J]. J Magn Reson Imaging, 2007, 25(1): 122-128. DOI: 10.1002/jmri.20771.
20
Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study[J]. Radiology, 2008, 249(3): 891-899. DOI: 10.1148/radiol.2493080080.
21
Zhang B, Liang L, Dong Y, et al. Intravoxel incoherent motion mr imaging for staging of hepatic fibrosis[J]. PLoS One, 2016, 11(1): e0147789. DOI: 10.1371/journal.pone.0147789.
22
Gulbay M, Ciliz DS, Celikbas AK, et al. Intravoxel incoherent motion parameters in the evaluation of chronic hepatitis B virus-induced hepatic injury: fibrosis and capillarity changes[J]. Abdom Radiol (NY), 2020, 45(8): 2345-2357. DOI: 10.1007/s00261-020-02430-9.
23
Jiang H, Chen J, Gao R, et al. Liver fibrosis staging with diffusion-weighted imaging asystematic review and meta-analysis[J]. Abdom Radiol (NY), 2017, 42(2): 490-501. DOI: 10.1007/s00261-016-0913-6.
24
Zhang J, Guo Y, Tan X, et al. MRI-based estimation of liver function by intravoxel incoherent motion diffusion-weighted imaging[J]. Magn Reson Imaging, 2016, 34(8): 1220-1225. DOI: 10.1016/j.mri.2016.05.013.
25
Chen F, Chen YL, Chen TW, et al. Liver lobe based intravoxel incoherent motion diffusion weighted imaging in hepatitis B related cirrhosis: association with child-pugh class and esophageal and gastric fundic varices[J]. Medicine (Baltimore), 2020, 99(2): e18671. DOI: 10.1097/MD.0000000000018671.
26
Liu MT, Zhang XQ, Lu J, et al. Evaluation of liver function using the hepatocyte enhancement fraction based on gadoxetic acid-enhanced MRI in patients with chronic hepatitis B[J]. Abdom Radiol (NY), 2020, 45(10): 3129-3135. DOI: 10.1007/s00261-020-02478-7.
27
Ippolito D, Pecorelli A, Famularo S, et al. Assessing liver function: diagnostic efficacy of parenchymal enhancement and liver volume ratio of Gd-EOB-DTPA-enhanced MRI study during interstitial and hepatobiliary phase[J]. Abdom Radiol (NY), 2019, 44(4): 1340-1349. DOI: 10.1007/s00261-018-1812-9.
28
Zhou ZP, Long LL, Qiu WJ, et al. Comparison of 10- and 20-min hepatobiliary phaseimages on Gd-EOB-DTPA-enhanced MRI T1 mapping for liver function assessment in clinic[J]. Abdom Radiol (NY), 2017, 42(9): 2272-2278. DOI: 10.1007/s00261-017-1143-2.
29
Yang M, Zhang Y, Zhao W, et al. Evaluation of liver function using liver parenchyma, spleen and portal vein signal intensities during the hepatobiliary phase in Gd-EOB-DTPA-enhanced MRI[J]. BMC Med Imaging, 2020, 20(1): 119. DOI: 10.1186/s12880-020-00519-7.
30
Verloh N, Utpatel K, Haimerl M, et al. Detecting liver fibrosis with Gd-EOB-DTPA-enhanced MRI: a confirmatory study[J]. Sci Rep, 2018, 8(1): 6207. DOI: 10.1038/s41598-018-24316-z.
31
Harada TL, Saito K, Araki Y, et al. Prediction of high-stage liver fibrosis using ADC value on diffusion-weighted imaging and quantitative enhancement ratio at the hepatobiliary phase of Gd-EOB-DTPA- enhanced MRI at 1.5 T[J]. Acta Radiol, 2018, 59(5): 509-516. DOI: 10.1177/0284185117725778.
32
Zhang W, Wang X, Miao Y, et al. Liver function correlates with liver-to-portal vein contrast ratio during the hepatobiliary phase with Gd-EOB-DTPA-enhanced MR at 3 Tesla[J]. Abdom Radiol (NY), 2018, 43(9): 2262-2269. DOI: 10.1007/s00261-018-1462-y.
33
Haimerl M, Verloh N, Zeman F, et al. Gd-EOB-DTPA-enhanced MRI for evaluation of liver function: comparison between signal-intensity- based indices and T1 relaxometry[J]. Sci Rep, 2017, 7(1): 43347. DOI: 10.1038/srep43347.
34
Sheng RF, Wang HQ, Yang L, et al. Assessment of liver fibrosis using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance[J]. Dig Liver Dis, 2017, 49(7): 789-795. DOI: 10.1016/j.dld.2017.02.006.
35
Haimerl M, Utpatel K, Verloh N, et al. Gd-EOB-DTPA-enhanced MR relaxometry for the detection and staging of liver fibrosis[J]. Sci Rep, 2017, 7(1): 41429. DOI: 10.1038/srep41429.
36
Yang L, Ding Y, Rao S, et al. Staging liver fibrosis in chronic hepatitis B with T1 relaxation time index on gadoxetic acid-enhanced MRI: comparison with aspartate aminotransferase-to-platelet ratio index and FIB-4[J]. J Magn Reson Imaging, 2017, 45(4): 1186-1194. DOI: 10.1002/jmri.25440.
37
Pan S, Wang XQ, Guo QY. Quantitative assessment of hepatic fibrosis in chronic hepatitis B and C: T1 mapping on Gd-EOB-DTPA-enhanced liver magnetic resonance imaging[J]. World J Gastroenterol, 2018, 24(18): 2024-2035. DOI: 10.3748/wjg.v24.i18.2024.
38
Besa C, Bane O, Jajamovich G, et al. 3D T1 relaxometry pre and post gadoxetic acid injection for the assessment of liver cirrhosis and liver function[J]. Magn Reson Imaging, 2015, 33(9): 1075-1082. DOI: 10.1016/j.mri.2015.06.013.
39
Zhou ZP, Long LL, Qiu WJ, et al. Evaluating segmental liver function using T1 mapping on Gd-EOB-DTPA-enhanced MRI with a 3.0 Tesla[J]. BMC Med Imaging, 2017, 17(1): 20. DOI: 10.1186/s12880-017-0192-x.
40
Lu LG, You H, Xie WF, et al. Consensus on the diagnosis and therapy of hepatic fibrosis (2019)[J]. J Clin Hepatol, 2019, 35(10): 2163-2172.
41
Petitclerc L, Sebastiani G, Gilbert G, et al. Liver fibrosis: Review of current imaging and MRI quantification techniques[J]. J Magn Reson Imaging, 2017, 45(5): 1276-1295. DOI: 10.1002/jmri.25550.
42
Venkatesh SK, Wells ML, Miller FH, et al. Magnetic resonance elastography: beyond liver fibrosis-a case-based pictorial review[J]. Abdom Radiol (NY), 2018, 43(7): 1590-1611. DOI: 10.1007/s00261-017-1383-1.
43
Wu WP, Hoi CI, Chen RC, et al. Comparison of the efficacy of Gd-EOB-DTPA-enhanced magnetic resonance imaging and magnetic resonance elastography in the detection and staging of hepatic fibrosis[J]. Medicine (Baltimore), 2017, 96(42): e8339. DOI: 10.1097/MD.0000000000008339.
44
Cheng YW, Chang YC, Chen YL, et al. Feasibility of measuring spleen stiffness with MR elastography and splenic volume to predict hepatic fibrosis stage[J]. PLoS One, 2019, 14(5): e0217876. DOI: 10.1371/journal.pone.0217876.
45
Tang A, Cloutier G, Szeverenyi NM, et al. Ultrasound elastography and MR elastography for assessing liver fibrosis: part 1, principles and techniques[J]. AJR Am J Roentgenol, 2015, 205(1): 22-32. DOI: 10.2214/AJR.15.14552.
46
Lefebvre T, Wartelle-Bladou C, Wong P, et al. Prospective comparison of transient, point shear wave, and magnetic resonance elastography for staging liver fibrosis[J]. Eur Radiol, 2019, 29(12): 6477-6488. DOI: 10.1007/s00330-019-06331-4.
47
Takamura T, Motosugi U, Ichikawa S, et al. Usefulness of MR elastography for detecting clinical progression of cirrhosis from child-pugh class A to B in patients with type C viral hepatitis[J]. J Magn Reson Imaging, 2016, 44(3): 715-722. DOI: 10.1002/jmri.25182.
48
Petitclerc L, Sebastiani G, Gilbert G, et al. Liver fibrosis: review of current imaging and MRI quantification techniques[J]. J Magn Reson Imaging, 2017, 45(5): 1276-1295. DOI: 10.1002/jmri.25550.
49
Tosun M, Onal T, Uslu H, et al. Intravoxel incoherent motion imaging for diagnosing and staging the liver fibrosis and inflammation[J]. Abdom Radiol (NY), 2020, 45(1): 15-23. DOI: 10.1007/s00261-019-02300-z.
50
Wáng YXJ, Li YT, Chevallier O, et al. Dependence of intravoxel incoherent motion diffusion MR threshold b-value selection for separating perfusion and diffusion compartments and liver fibrosis diagnostic performance[J]. Acta Radiol, 2019, 60(1): 3-12. DOI: 10.1177/0284185118774913.
51
Petitclerc L, Gilbert G, Nguyen BN, et al. Liver fibrosis quantification by magnetic resonance imaging[J]. Top Magn Reson Imaging, 2017, 26(6): 229-241. DOI: 10.1097/RMR.0000000000000149.

PREV Research progress on the specificity and brain network of acupuncture at Zhigou acupoint based on brain fMRI technology
NEXT The quantification methods of the confounding effects in chemical exchange saturation transfer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn