Share:
Share this content in WeChat
X
Review
The quantification methods of the confounding effects in chemical exchange saturation transfer
DOU Han  ZHENG Yang  WANG Xiaoming 

Cite this article as: Dou H, Zheng Y, Wang XM. The quantification methods of the confounding effects in chemical exchange saturation transfer[J]. Chin J Magn Reson Imaging, 2021, 12(5): 118-120, 124. DOI:10.12015/issn.1674-8034.2021.05.029.


[Abstract] Chemical exchange saturation transfer (CEST) is a new molecular imaging technique, which can be used to obtain metabolite concentration information indirectly for clinical diagnosis and prognosis evaluation. However, the CEST signal obtained is not simply from chemical exchange, but contains mixed effects such as direct water saturation (DS), traditional magnetization transfer (MT), nuclear overhauser enhancement (NOE) and so on. How to remove or utilize these effects to improve the quantization accuracy and imaging quality is crucial to clinical transformation.
[Keywords] chemical exchange saturation transfer;magnetic resonance imaging;magnetization transfer;nuclear overhauser enhancement;direct water saturation

DOU Han   ZHENG Yang   WANG Xiaoming*  

Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110000, China

Wang XM, E-mail: wangxm024@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This article is supported by the National Natural Science Foundation of China (No. 81871408, 81271631). National Science Foundation for Young Scientists of China (No. 81801658). Outstanding Scientific Fund of Shengjing Hospital (No. 201402).
Received  2021-01-26
Accepted  2021-03-22
DOI: 10.12015/issn.1674-8034.2021.05.029
Cite this article as: Dou H, Zheng Y, Wang XM. The quantification methods of the confounding effects in chemical exchange saturation transfer[J]. Chin J Magn Reson Imaging, 2021, 12(5): 118-120, 124. DOI:10.12015/issn.1674-8034.2021.05.029.

1
Zheng Y, Wang XM. Evaluation of brain injury in neonates by magnetization transfer imaging combined amide proton transfer imaging: a preliminary study[J]. Chin J Magn Reson Imaging, 2017, 8(3): 189-195. DOI: 10.12015/issn.1674-8034.2017.03.006.
2
Cui J, Zu Z. Towards the molecular origin of glutamate CEST (GluCEST) imaging in rat brain[J]. Magn Reson Med, 2020, 83(4): 1405-1417. DOI: 10.1002/mrm.28021.
3
Debnath A, Hariharan H, Nanga R P R, et al. Glutamate-Weighted CEST Contrast After Removal of Magnetization Transfer Effect in Human Brain and Rat Brain with Tumor[J]. Molecular Imaging and Biology, 2020, 22(4): 1087-1101. DOI: 10.1007/s11307-019-01465-9.
4
Singh A, Debnath A, Cai K, et al. Evaluating the feasibility of creatine‐weighted CEST MRI in human brain at 7 T using a Z‐spectral fitting approach[J]. NMR in Biomedicine, 2019, 32(12): e4176. DOI: 10.1002/nbm.4176.
5
Chung JJ, Jin T, Lee JH, et al. Chemical exchange saturation transfer imaging of phosphocreatine in the muscle[J]. Magnetic Resonance in Medicine, 2019, 81(6): 3476-3487. DOI: 10.1002/mrm.27655.
6
Chen L, Wei Z, Chan K W Y, et al. Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI[J]. NeuroImage, 2019, 188: 380-390. DOI: 10.1016/j.neuroimage.2018.12.018.
7
Yao J, Chakhoyan A, Nathanson DA, et al. Metabolic characterization of human IDH mutant and wild type gliomas using simultaneous pH- and oxygen-sensitive molecular MRI[J]. Neuro Oncol, 2019, 21(9): 1184-1196. DOI: 10.1093/neuonc/noz078.
8
van Zijl PCM, Lam WW, Xu J, et al. Magnetization transfer contrast and chemical exchange saturation transfer MRI. Features and analysis of the field-dependent saturation spectrum[J]. Neuroimage, 2018, 168: 222-241. DOI: 10.1016/j.neuroimage.2017.04.045.
9
Wei GJ, Yi PE, Tao Q, et al. Comparisons of different CEST quantification metrics applied in acute Parkinson's disease mouse model[J]. Chin J Magn Reson, 2019, 36(2): 195-207. DOI: 10.11938/cjmr20182692.
10
Debnath A, Hariharan H, Nanga R, et al. Glutamate-weighted CEST contrast after removal of magnetization transfer effect in human brain and rat brain with tumor[J]. Mol Imaging Biol, 2020, 22(4): 1087-1101. DOI: 10.1007/s11307-019-01465-9.
11
Swanson SD, Malyarenko DI, Fabiilli ML, et al. Molecular, dynamic, and structural origin of inhomogeneous magnetization transfer in lipid membranes[J]. Magn Reson Med, 2017, 77(3): 1318-1328. DOI: 10.1002/mrm.26210.
12
Smith AK, Ray KJ, Larkin JR, et al. Does the magnetization transfer effect bias chemical exchange saturation transfer effects? Quantifying chemical exchange saturation transfer in the presence of magnetization transfer[J]. Magn Reson Med, 2020, 84(3): 1359-1375. DOI: 10.1002/mrm.28212.
13
Hua J, Jones CK, Blakeley J, et al. Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain[J]. Magn Reson Med, 2007, 58(4): 786-793. DOI: 10.1002/mrm.21387.
14
Rerich E, Zaiss M, Korzowski A, et al. Relaxation-compensated CEST-MRI at 7 T for mapping of creatine content and pH - preliminary application in human muscle tissue in vivo[J]. NMR in biomedicine, 2015, 28(11): 1402-1412. DOI: 10.1002/nbm.3367.
15
Zhang XY, Wang F, Li H, et al. CEST imaging of fast exchanging amine pools with corrections for competing effects at 9.4 T[J]. NMR Biomed, 2017, 30(7): e3715. DOI: 10.1002/nbm.3715.
16
Hou J, Wong VW, Jiang B, et al. Macromolecular proton fraction mapping based on spin-lock magnetic resonance imaging[J]. Magn Reson Med, 2020, 84(6): 3157-3171. DOI: 10.1002/mrm.28362.
17
Kim B, Schär M, Park H, et al. A deep learning approach for magnetization transfer contrast MR fingerprinting and chemical exchange saturation transfer imaging[J]. Neuroimage, 2020, 221: 117165. DOI: 10.1016/j.neuroimage.2020.117165.
18
Xu J, Chan KW, Xu X, et al. On-resonance variable delay multipulse scheme for imaging of fast-exchanging protons and semisolid macromolecules[J]. Magn Reson Med, 2017, 77(2): 730-739. DOI: 10.1002/mrm.26165.
19
Yan S, Li ML, Jin ZY. Principle and application progress of chemical exchange saturation transfer (CEST) technique[J]. Chin J Magn Reson Imaging, 2016, 7(4): 241-248. DOI: 10.12015/issn.1674-8034.2016.04.001.
20
Heo HY, Zhang Y, Jiang S, et al. Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7 T[J]. Magn Reson Med, 2019, 81(1): 316-330. DOI: 10.1002/mrm.27389.
21
Khlebnikov V, Siero J, Wijnen J, et al. Is there any difference in amide and NOE CEST effects between white and gray matter at 7T?[J]. J Magn Reson, 2016, 272(11): 82-86. DOI: 10.1016/j.jmr.2016.09.010.
22
Zhang XY, Wang F, Afzal A, et al. A new NOE-mediated MT signal at around -1.6ppm for detecting ischemic stroke in rat brain[J]. Magn Reson Imaging, 2016, 34(8): 1100-1106. DOI: 10.1016/j.mri.2016.05.002.
23
Heo HY, Jones CK, Hua J, et al. Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7 T[J]. J Magn Reson Imaging, 2016, 44(1): 41-50. DOI: 10.1002/jmri.25108.
24
Lee DH, Heo HY, Zhang K, et al. Quantitative assessment of the effects of water proton concentration and water T(1) changes on amide proton transfer (APT) and nuclear overhauser enhancement (NOE) MRI: The origin of the APT imaging signal in brain tumor[J]. Magn Reson Med, 2017, 77(2): 855-863. DOI: 10.1002/mrm.26131.
25
Zhang XY, Wang F, Li H, et al. Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear overhauser enhancement (rNOE) saturation transfer effects[J]. NMR Biomed, 2017, 30(7): e3716-29. DOI: 10.1002/nbm.3716.
26
Zhang XY, Wang F, Jin T, et al. MR imaging of a novel NOE-mediated magnetization transfer with water in rat brain at 9.4 T[J]. Magn Reson Med, 2017, 78(2): 588-597. DOI: 10.1002/mrm.26396.
27
Zu Z. Ratiometric NOE (-1.6) contrast in brain tumors[J]. NMR Biomed, 2018, 31(12): e4017. DOI: 10.1002/nbm.4017.
28
Heo HY, Zhang Y, Jiang S, et al. Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 tesla[J]. Magn Reson Med, 2016, 75(4): 1630-1639. DOI: 10.1002/mrm.25795.
29
Lin EC, Li H, Zu Z, et al. Chemical exchange rotation transfer (CERT) on human brain at 3 tesla[J]. Magn Reson Med, 2018, 80(6): 2609-2617. DOI: 10.1002/mrm.27365.
30
Zhang L, Zhao Y, Chen Y, et al. Voxel-wise optimization of pseudo voigt profile (VOPVP) for Z-spectra fitting in chemical exchange saturation transfer (CEST) MRI[J]. Quant Imaging Med Surg, 2019, 9(10): 1714-1730. DOI: 10.21037/qims.2019.10.01.
31
Shaghaghi M, Chen W, Scotti A, et al. In vivo quantification of proton exchange rate in healthy human brains with omega plot[J]. Quant Imaging Med Surg, 2019, 9(10): 1686-1696. DOI: 10.21037/qims.2019.08.06.
32
Wu Y, Chen Y, Zhao Y, et al. Direct radiofrequency saturation corrected amide proton transfer tumor MRI at 3 T[J]. Magn Reson Med, 2019, 81(4): 2710-2719. DOI: 10.1002/mrm.27562.
33
Yuwen ZI, Wang E, Cheung J S, et al. Direct saturation-corrected chemical exchangesaturation transfer MRI of glioma: simplified decoupling of amide proton transfer and nuclear overhauser effect contrasts[J]. Magn Reson Med, 2017, 78(6): 2307-2314. DOI: 10.1002/mrm.26959.
34
Randtke EA, Pagel MD, Cárdenas-Rodríguez J. QUESPOWR MRI: Quantification of exchange as a function of saturation power on the water resonance[J]. J Magn Reson, 2016, 270(9): 56-70. DOI: 10.1016/j.jmr.2016.06.022.
35
Xue XY, Hou YQ, He XW, et al. Research progresses of inhomogeneity correction with B0 field in chemical exchange saturation transfer MRI[J]. Chin J Med Imaging Technol, 2016, 32(8): 1285-1289. DOI: 10.13929/j.1003-3289.2016.08.036.
36
Sun PZ. Fast correction of B (0) field inhomogeneity for pH-specific magnetization transfer and relaxation normalized amide proton transfer imaging of acute ischemic stroke without Z-spectrum[J]. Magn Reson Med, 2020, 83(5): 1688-1697. DOI: 10.1002/mrm.28040.
37
Schuenke P, Windschuh J, Roeloffs V, et al. Simultaneous mapping of water shift and B (1) (WASABI)-Application to field-Inhomogeneity correction of CEST MRI data[J]. Magn Reson Med, 2017, 77(2): 571-580. DOI: 10.1002/mrm.26133.
38
Zhe SP. Development of intravoxel inhomogeneity correction for chemical exchange saturation transfer spectral imaging: a high-resolution field map-based deconvolution algorithm for magnetic field inhomogeneity correction[J]. Magnetic resonance in medicine, 2020, 83(4): 1348-1355. DOI: 10.1002/mrm.28015.
39
Kang B, Kim B, Schär M, et al. Unsupervised learning for magnetization transfer contrast MR fingerprinting: application to CEST and nuclear overhauser enhancement imaging[J]. Magn Reson Med, 2021, 85(4): 2040-2054. DOI: 10.1002/mrm.28573.
40
Li Y, Xie D, Cember A, et al. Accelerating GluCEST imaging using deep learning for B (0) correction[J]. Magn Reson Med, 2020, 84(4): 1724-1733. DOI: 10.1002/mrm.28289.

PREV Progress in quantitative assessment of liver fibrosis and cirrhosis by MRI
NEXT Tumor microenvironment responsive 19F-MR molecular imaging nanoprobe
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn