Share:
Share this content in WeChat
X
Clinical Article
Changes of iron in deep gray matter nuclei of children aged 0—6 years: Quantitative susceptibility mapping versus R2
NING Ning  JIN Chao  ZHANG Weishan  ZHANG Lei  WU Peng  GUO Hua  LIU Congcong  WU Xiangyu  YANG Jian 

Cite this article as: Ning N, Jin C, Zhang WS, et al. Changes of iron in deep gray matter nuclei of children aged 0—6 years: Quantitative susceptibility mapping versus R2*[J]. Chin J Magn Reson Imaging, 2021, 12(6): 22-26. DOI:10.12015/issn.1674-8034.2021.06.005.


[Abstract] Objective To observe the age-related variation of the iron in deep gray matter nuclei of children aged 0—6 years by measuring the susceptibility and R2* values on quantitative susceptibility mapping (QSM) and R2* maps, and to compare their performances. Materials andMethods Eighty-seven subjects (26 males/61 females) aged from 1 month to 6 years were enrolled in this study. The subjects were divided into two groups (from 1 month to 1-year-old and from >1-year-old to 6 years old). Susceptibility and R2* values of caudate nucleus, putamen, globus pallidus and thalamus were measured and analyzed. The relation of the two parameters and age were explored.Results From 1 month to 1-year-old, the susceptibility value of QSM in globus pallidus showed significantly positive correlation with age, as well as the R2* values in deep gray nuclei (all P<0.001). From >1-year-old to 6 years, the susceptibility and R2* values in each deep gray nucleus exhibited significantly positive correlations with age (all P<0.05) and the correlation coefficients between susceptibility values and age were higher than R2* values in caudate nucleus, putamen and globus pallidus.Conclusions Compared with the R2* values which could be influenced by brain water content, QSM may be a more preferable method for estimating the changes of iron in deep gray matter nuclei of children aged 0—6 years.
[Keywords] quantitative susceptibility mapping;iron;deep gray nuclei;children;transverse relaxation rate;magnetic resonance imaging

NING Ning1, 2   JIN Chao1   ZHANG Weishan1   ZHANG Lei1   WU Peng3   GUO Hua3   LIU Congcong1   WU Xiangyu2   YANG Jian1*  

1 Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China

2 Department of Nuclear Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China

3 Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing 100085, China

Yang J, E-mail: cjr.yangjian@vip.163.com

Conflicts of interest   None.

This work was part of National Natural Science Found (No. 81771810, 81971581); National Key Research and Development Program of China (No. 2016YFC0100300); Natural Science Foundation of Shaanxi Province (No.2019JM-002); Innovation Capability Support Program of Shaanxi (No. 2019TD-018).
Received  2021-01-28
Accepted  2021-04-19
DOI: 10.12015/issn.1674-8034.2021.06.005
Cite this article as: Ning N, Jin C, Zhang WS, et al. Changes of iron in deep gray matter nuclei of children aged 0—6 years: Quantitative susceptibility mapping versus R2*[J]. Chin J Magn Reson Imaging, 2021, 12(6): 22-26. DOI:10.12015/issn.1674-8034.2021.06.005.

1
Thirupathi A, Chang YZ. Brain iron metabolism and CNS diseases[J]. Adv Exp Med Biol, 2019, 1173: 1-19. DOI: 10.1007/978-981-13-9589-5_1.
2
Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron accumulation[J]. Handb Clin Neurol, 2018, 147: 293-305. DOI: 10.1016/B978-0-444-63233-3.00019-1.
3
Tang S, Xu Y, Liu X, et al. Quantitative susceptibility mapping shows lower brain iron content in children with autism[J]. Eur Radiol, 2021, 31(4): 2073-2083. DOI: 10.1007/s00330-020-07267-w.
4
Daugherty A, Raz N. Age-related differences in iron content of subcortical nuclei observed in vivo: a meta-analysis[J]. Neuroimage, 2013, 70: 113-121. DOI: 10.1016/j.neuroimage.2012.12.040.
5
Ghassaban K, Liu S, Jiang C, et al. Quantifying iron content in magnetic resonance imaging[J]. Neuroimage, 2019, 187: 77-92. DOI: 10.1016/j.neuroimage.2018.04.047.
6
Yan F, He N, Lin H, et al. Iron deposition quantification: Applications in the brain and liver[J]. J Magn Reson Imaging, 2018, 48(2): 301-317. DOI: 10.1002/jmri.26161.
7
Halefoglu AM, Yousem DM. Susceptibility weighted imaging: Clinical applications and future directions[J]. World J Radiol, 2018, 10(4): 30-45. DOI: 10.4329/wjr.v10.i4.30.
8
Vinayagamani S, Sheelakumari R, Sabarish S, et al. Quantitative susceptibility mapping: Technical considerations and clinical applications in neuroimaging[J]. J Magn Reson Imaging, 2021, 53(1): 23-37. DOI: 10.1002/jmri.27058.
9
Li W, Wu B, Batrachenko A, et al. Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan[J]. Hum Brain Mapp, 2014, 35(6): 2698-2713. DOI: 10.1002/hbm.22360.
10
Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition[J]. Neuroimage, 2011, 55(4): 1645-1656. DOI: 10.1016/j.neuroimage.2010.11.088.
11
Bilgic B, Pfefferbaum A, Rohlfing T, et al. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping[J]. Neuroimage, 2012, 59(3): 2625-2635 DOI: 10.1016/j.neuroimage.2011.08.077.
12
Knickmeyer RC, Gouttard S, Kang C, et al. A structural MRI study of human brain development from birth to 2 years[J]. J Neurosci, 2008, 28(47): 12176-12182. DOI: 10.1523/JNEUROSCI.3479-08.2008.
13
Zhang Y, Shi J, Wei H, et al. Neonate and infant brain development from birth to 2 years assessed using MRI-based quantitative susceptibility mapping[J]. Neuroimage, 2019, 185: 349-360. DOI: 10.1016/j.neuroimage.2018.10.031.
14
Liang YK, Zhu YN, Zhou HP, et al. Application of quantitative susceptibility mapping in neonatal cerebra lron deposit[J]. J Clin Radiology, 2020, 39(5): 957-961. DOI: 10.13437/j.cnki.jcr.2020.05.026.
15
Wang Y, Liu T. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker[J]. Magn Reson Med, 2015, 73(1): 82-101. DOI: 10.1002/mrm.25358.
16
Möller H E, Bossoni L, Connor JR, et al. Iron, myelin, and the brain: Neuroimaging meets neurobiology[J]. Trends Neurosci, 2019, 42(6): 384-401. DOI: 10.1016/j.tins.2019.03.009.
17
Leppert IR, Almli CR, McKinstry RC, et al. T(2) relaxometry of normal pediatric brain development[J]. J Magn Reson Imaging, 2009, 29(2): 258-267. DOI: 10.1002/jmri.21646.
18
Cheng Q, Huang J, Liang J, et al. Evaluation of abnormal iron distribution in specific regions in the brains of patients with Parkinson's disease using quantitative susceptibility mapping and R2* mapping[J]. Exp Ther Med, 2020, 19(6): 3778-3786. DOI: 10.3892/etm.2020.8645.
19
Langkammer C, Schweser F, Krebs N, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study[J]. Neuroimage, 2012, 62(3): 1593-1599. DOI: 10.1016/j.neuroimage.2012.05.049.
20
Leisman G, Braun-Benjamin O, Melillo R. Cognitive-motor interactions of the basal ganglia in development[J]. Front Syst Neurosci, 2014(8): 16. DOI: 10.3389/fnsys.2014.00016.
21
Pivina L, Semenova Y, Doşa MD, et al. Iron deficiency, cognitive functions, and neurobehavioral disorders in children[J]. J Mol Neurosci, 2019, 68(1): 1-10. DOI: 10.1007/s12031-019-01276-1.
22
Tepper JM, Abercrombie ED, Bolam JP. Basal ganglia macrocircuits[J]. Prog Brain Res,2007,160:3-7. DOI: 10.1016/S0079-6123(06)60001-0.
23
Zhang Y, Wei H, Cronin MJ, et al. Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping[J]. Neuroimage, 2018, 171: 176-189. DOI: 10.1016/j.neuroimage.2018.01.008.

PREV Contrast study using the resting-state fractional amplitude of low-frequency fluctuations between treatment-naive patients with schizophrenia and obsessive-compulsive disorder
NEXT Primary study of automatic segmentation and measurement of brain region volumes applicating in Alzheimer,s disease diagnosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn