Share:
Share this content in WeChat
X
Original Article
Correlation analysis of sleep duration of normal elderly and cognitive function brain regions volumes
YUAN Mengya  HONG Bo  ZHANG Wei  LIU An  WANG Jinghua  LIU Yuanyuan  YAN Feng  WANG Tao 

Cite this article as: Yuan MY, Hong B, Zhang W, et al. Correlation analysis of sleep duration of normal elderly and cognitive function brain regions volumes[J]. Chin J Magn Reson Imaging, 2021, 12(6): 62-65, 107. DOI:10.12015/issn.1674-8034.2021.06.012.


[Abstract] Objective To evaluate the association between sleep duration of the normal cognitive elderly and the volumes of the essential brain regions of cognitive function. Materials andMethods One hundred and eighteen elderly subjects with normal cognitive function were included in this study. Freesurfer 6.0 software was used to process MRI data of the participants and segment brain regions. The participants were divided into two groups: short sleeper group (n=46, sleep duration <7 hours) and long sleeper group (n=72, sleep duration ≥7 hours). The association between sleep duration and the volumes of the essential brain regions of cognitive function were analyzed by partial correlation respectively.Results When the sleep duration is longer than or equal to 7 hours, it has no significant association with volumes of the essential brain regions of cognitive function. When the sleep duration is shorter than 7 hours, it has a positive association with the volumes of left thalamus (r=0.445, P=0.030), caudate (r=0.371, P=0.048) and the right hippocampus (r=0.334, P=0.076), amygdala (r=0.445, P=0.030), thalamus (r=0.371, P=0.048), and caudate (r=0.414, P=0.036).Conclusions When sleep duration is less than 7 hours, it has a significant association with most of the essential brain regions of cognitive function. Adjusting sleep duration maybe helpful to prevent neurodegenerative changes in related brain regions of cognitive function.
[Keywords] elderly;sleep duration;magnetic resonance imaging;cognitive function;segmentation of brain regions

YUAN Mengya1, 2   HONG Bo1, 2   ZHANG Wei1, 2   LIU An1, 2   WANG Jinghua1, 2   LIU Yuanyuan1, 2   YAN Feng1, 2   WANG Tao1, 2*  

1 Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China

2 Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China

Wang T, E-mail: wtshhwy@163.com

Conflicts of interest   None.

This work was part of National Natural Science Foundation of China (No. 81571298) and Shanghai Health System Excellent Talent Training Program (2017BR054).
Received  2021-02-18
Accepted  2021-03-19
DOI: 10.12015/issn.1674-8034.2021.06.012
Cite this article as: Yuan MY, Hong B, Zhang W, et al. Correlation analysis of sleep duration of normal elderly and cognitive function brain regions volumes[J]. Chin J Magn Reson Imaging, 2021, 12(6): 62-65, 107. DOI:10.12015/issn.1674-8034.2021.06.012.

1
Sengoku R. Aging and Alzheimer's disease pathology[J]. Neuropathology, 2020, 40(1): 22-9. DOI: 10.1111/neup.12626.
2
Zhao L. 2020 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2020, 16(3): 1-85. DOI: 10.1002/alz.12068.
3
Weidner WS, Barbarino P. The state of the art of dementia research: New frontiers[J]. Alzheimer's & Dementia, 2019, 15(7): 4-443. DOI: 10.1016/j.jalz.2019.06.4115.
4
Crous-Bou M, Minguillón C, Gramunt N, et al. Alzheimer's disease prevention: from risk factors to early intervention[J]. Alzheimer's Res Therapy, 2017, 9(1): 71. DOI: 10.1186/s13195-017-0297-z.
5
Malone C, Deason RG, Palumbo R, et al. False memories in patients with mild cognitive impairment and mild Alzheimer's disease dementia: Can cognitive strategies help?[J]. J Clin Exper Neuropsychol, 2019, 41(2): 204-218. DOI: 10.1080/13803395.2018.1513453.
6
Shi L, Chen SJ, Ma MY, et al. Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis[J]. Sleep Medicine Reviews, 2018, 40: 4-16. DOI: 10.1016/j.smrv.2017.06.010.
7
Kuo CY, Hsiao HT, Lo IH, et al. Association between obstructive sleep apnea, its treatment, and Alzheimer's disease: Systematic mini-review[J]. Front Aging Neurosci, 2021, 12: 591737. DOI: 10.3389/fnagi.2020.591737.
8
Xu W, Tan L, Su BJ, et al. Sleep characteristics and cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact older adults: The CABLE study[J]. Alzheimer's & Dementia, 2020, 16(8): 1146-1152. DOI: 10.1002/alz.12117.
9
Hermesdorf M, Szentkirályi A, Teismann H, et al. Sleep characteristics, cognitive performance, and gray matter volume: findings from the BiDirect study[J]. Sleep, 2020, 44(3): zsaa209. DOI: 10.1093/sleep/zsaa209.
10
Long Z, Cheng F, Lei X. Age effect on gray matter volume changes after sleep restriction[J]. PLoS One, 2020, 15(2): e0228473. DOI: 10.1371/journal.pone.0228473.
11
Chen PL, Lee WJ, Sun WZ, et al. Risk of dementia in patients with insomnia and long-term use of hypnotics: a population-based retrospective cohort study[J]. PLoS One, 2012, 7(11): e49113. DOI: 10.1371/journal.pone.0049113.
12
Guarnieri B, Adorni F, Musicco M, et al. Prevalence of sleep disturbances in mild cognitive impairment and dementing disorders: a multicenter Italian clinical cross-sectional study on 431 patients[J]. Dement Geriatr Cogn Disord, 2012, 33(1): 50-58. DOI: 10.1159/000335363.
13
Nickl-Jockschat T, Kleiman A, Schulz JB, et al. Neuroanatomic changes and their association with cognitive decline in mild cognitive impairment: a meta-analysis[J]. Brain Structure and Function, 2012, 217(1): 115-125. DOI: 10.1007/s00429-011-0333-x.
14
Mcdonald CR, Gharapetian L, Mcevoy LK, et al. Relationship between regional atrophy rates and cognitive decline in mild cognitive impairment[J]. Neurobiol Aging, 2012, 33(2): 242-253. DOI: 10.1016/j.neurobiolaging.2010.03.015.
15
Alperin N, Wiltshire J, Lee SH, et al. Effect of sleep quality on amnestic mild cognitive impairment vulnerable brain regions in cognitively normal elderly individuals[J]. Sleep, 2019, 42(3): zsy254. DOI: 10.1093/sleep/zsy254.
16
Ott CV, Johnson CB, Macoveanu J, et al. Structural changes in the hippocampus as a biomarker for cognitive improvements in neuropsychiatric disorders: A systematic review[J]. Eur Neuropsychopharmacol, 2019, 29(3): 319-329. DOI: 10.1016/j.euroneuro.2019.01.105.
17
Riemann D, Voderholzer U, Spiegelhalder K, et al. Chronic insomnia and MRI-measured hippocampal volumes: a pilot study[J]. Sleep, 2007, 30(8): 955-958. DOI: 10.1093/sleep/30.8.955.
18
Joo EY, Kim H, Suh S, et al. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry[J]. Sleep, 2014, 37(7): 1189-1198. DOI: 10.5665/sleep.3836.
19
Sawangjit A, Oyanedel CN, Niethard N, et al. The hippocampus is crucial for forming non-hippocampal long-term memory during sleep[J]. Nature, 2018, 564(7734): 109-113. DOI: 10.1038/s41586-018-0716-8.
20
Spiegelhlder K, Regen W, Baglioni C, et al. Insomnia does not appear to be associated with substantial structural brain changes[J]. Sleep, 2013, 36(5): 731-737. DOI: 10.5665/sleep.2638.
21
Gai XT, Wu KAI. Association of the volume and tau pathology of sub-fields of hippocampal formationwith cognitive declinebased on ADNI data[J]. Radiol Pract, 2020, 35(12): 7-12.
22
Nelson PT, Abner EL, Patel E, et al. The amygdala as a locus of pathologic misfolding in neurodegenerative diseases[J]. J Neuropathol Exp Neurol, 2018, 77(1): 2-20. DOI: 10.1093/jnen/nlx099.
23
Gong L, Liao T, Liu D, et al. Amygdala changes in chronic insomnia and their association with sleep and anxiety symptoms: Insight from shape analysis[J]. Neural Plast, 2019, 2019: 8549237. DOI: 10.1155/2019/8549237.
24
Liu X, Yang L, Wellman LL, et al. GABAergic antagonism of the central nucleus of the amygdala attenuates reductions in rapid eye movement sleep after inescapable footshock stress[J]. Sleep, 2009, 32(7): 888-896. DOI: 10.1093/sleep/32.7.888.
25
Wassing R, Schalkwijk F, Lakbila-Kamal O, et al. Haunted by the past: old emotions remain salient in insomnia disorder [J]. Brain, 2019, 142(6): 1783-1796. DOI: 10.1093/brain/awz089.
26
Baidoo N, Wolter M, Leri F. Opioid withdrawal and memory consolidation[J]. Neuroscience & Biobehavioral Reviews, 2020, 114: 16-24. DOI: 10.1016/j.neubiorev.2020.03.029.
27
Yue L, Wang T, Wang J, et al. Asymmetry of hippocampus and amygdala defect in subjective cognitive decline among the community dwelling Chinese[J]. Front Psychiatry, 2018, 9: 226. DOI: 10.3389/fpsyt.2018.00226.
28
Gent TC, Bassetti CLA, Adamantidis AR. Sleep-wake control and the thalamus[J]. Current Opinion in Neurobiology, 2018, 52: 188-197. DOI: 10.1016/j.conb.2018.08.002.
29
Hu ZA, Ren SC. Role of the thalamus in wakefulness control[J]. J Third Milit Med Univ, 2018, 40 (23): 2119-2121. DOI: 10.16016/j.1000-5404.201811038.
30
Li M, Wang R, Zhao M, et al. Abnormalities of thalamus volume and resting state functional connectivity in primary insomnia patients[J]. Brain Imaging Behav, 2019, 13(5): 1193-1201. DOI: 10.1007/s11682-018-9932-y.
31
Chappel-Farley MG, Lui KK, Dave A, et al. Candidate mechanisms linking insomnia disorder to Alzheimer's disease risk[J]. Current Opinion in Behavioral Sciences, 2020, 33: 92-98. DOI: 10.1016/j.cobeha.2020.01.010.
32
Stoffers D, Altena E, Van Der Werf YD, et al. The caudate: a key node in the neuronal network imbalance of insomnia?[J]. Brain, 2014, 137(Pt 2): 610-620. DOI: 10.1093/brain/awt329.
33
Vataev SI, Oganesyan GA. Effects of uni- and bilateral destructions of the caudate nucleus head by kainic acid on electroencephalogram in the wakefulness—sleep cycle in wistar rats[J]. J Evolutionary Biochemistry & Physiology, 2000, 36(2): 155-160. DOI: 10.1007/BF02754329.
34
Fortier-Brochu E, Beaulieu-Bonneau S, Ivers H, et al. Insomnia and daytime cognitive performance: a meta-analysis[J]. Sleep Med Rev, 2012, 16(1): 83-94. DOI: 10.1016/j.smrv.2011.03.008.
35
Rottchy C, Langner R, Dogan I, et al. Modelling neural correlates of working memory: a coordinate-based meta-analysis[J]. NeuroImage, 2012, 60(1): 830-846. DOI: 10.1016/j.neuroimage.2011.11.050.
36
De Jong LW, Ferrarini L, Van Der Grond J, et al. Shape abnormalities of the striatum in Alzheimer's disease[J]. J Alzheimer's Dis, 2011, 23(1): 49-59. DOI: 10.3233/JAD-2010-101026.
37
Persson K, Bohbot VD, Bogdanovic N, et al. Finding of increased caudate nucleus in patients with Alzheimer's disease[J]. Acta Neurologica Scandinavica, 2018, 137(2): 224-232. DOI: 10.1111/ane.12800.

PREV Abnormal brain network topology during non-rapid eye movement sleep and its correlation with cognitive behavioral abnormalities in narcolepsy type 1
NEXT Quantitative experimental study in a rabbit model of liver fibrosis by DCE-MRI with Gd-EOB-DTPA
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn