Share:
Share this content in WeChat
X
Original Article
Quantitative experimental study in a rabbit model of liver fibrosis by DCE-MRI with Gd-EOB-DTPA
JIANG Jinzhao  ZOU Liqiu  ZHANG Hao  ZHONG Wenxin  CHENG Lin  SHEN Xinping  YANG Yang 

Cite this article as: Jiang JZ, Zou LQ, Zhang H, et al. Quantitative experimental study in a rabbit model of liver fibrosis by DCE-MRI with Gd-EOB-DTPA[J]. Chin J Magn Reson Imaging, 2021, 12(6): 66-71. DOI:10.12015/issn.1674-8034.2021.06.013.


[Abstract] Objective To explore the diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging with (DCE-MRI), which based on pharmacokinetics, for quantitatively evaluating the stage of liver fibrosis (LF) in rabbits. Materials andMethods Two hundred healthy rabbits were randomly divided into LF group (n=118) and control group (n=40). LF group received subcutaneous injection of 50% CCl4 oil solution, while control group received injection with the same amount of normal saline solution. The LF group (n=40) and control group (n=10) were randomly selected at the end of the 4th, 5th, 6th, 15th week, respectively. All selected rabbits were underwent MRI axial scan for quantitative characteristic parameter values, including volume transfer constant (Ktrans), reflux rate constant (Kep), volume fraction of extravascular extracellular space (Ve) and volume fraction of plasma (Vp). All the liver tissue were sampled for the histopathological Scheuer staging. One-way analysis of variance evaluated the differences of Ktrans, Kep, Ve and Vp among different groups. Spearman correlation was used to analyze the correlation between Ktrans, Kep, Ve and Vp in different LF stages. Comparing the diagnostic performance of all quantitative parameter values by ROC curve analysis.Results There were 150 rabbits included in our study, which covered F0 (n=32); F1 (n=32); F2 (n=35); F3 (n=30) and F4 (n=21). Significant differences of Ktrans were demonstrated between F0 vs. F2, F3, F4, respectively; F1 vs. F2, F3, F4, respectively; F2 vs. F4 (P<0.05). There were significant differences in Kep between F0 vs. F2, F3, F4, respectively; F1 vs. F2, F3, F4, respectively (P<0.05). There were significant differences in Vp between F1 vs. F0, F2, F3, F4, respectively (P<0.05). But no significant differences of Ve were shown among all groups (P>0.05). Ktrans and Kep were correlated with LF stage (r=0.730, -0.617, respectively, P<0.0001), whereas, no significant correlation was found for Ve or Vp (P>0.05). The AUCs of Ktrans were the greatest than those of the other quantitative parameters (0.897 for F0 vs. F1—F4, 0.863 for F0 vs. F1—F2, 0.942 for F0 vs. F3—F4, 0.809 for F1—F2 vs. F3—F4), while the AUCs of Kep was 0.820, 0.787, 0.864, 0.768, respectively.Conclusions The quantitative evaluation of Gd-EOB-DTPA DCE-MRI has definite diagnostic value for LF staging, among which Ktrans shows the best diagnostic efficacy.
[Keywords] liver fibrosis;magnetic resonance imaging;dynamic contrast-enhanced;Ktrans;Kep

JIANG Jinzhao1   ZOU Liqiu2   ZHANG Hao2   ZHONG Wenxin2   CHENG Lin1   SHEN Xinping1*   YANG Yang2  

1 Department of Medical Imaging Center, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China

2 Department of Medical Imaging, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China

Shen XP, E-mail: shenxinping2021@163.com

Conflicts of interest   None.

This work was part of National Natural Science Foundation of China (No. 81771805); Science and Technology Project of Shenzhen Nanshan District (No. 2018009).
Received  2021-01-07
Accepted  2021-03-08
DOI: 10.12015/issn.1674-8034.2021.06.013
Cite this article as: Jiang JZ, Zou LQ, Zhang H, et al. Quantitative experimental study in a rabbit model of liver fibrosis by DCE-MRI with Gd-EOB-DTPA[J]. Chin J Magn Reson Imaging, 2021, 12(6): 66-71. DOI:10.12015/issn.1674-8034.2021.06.013.

1
Mathew RP, Venkatesh SK. Imaging of hepatic fibrosis[J]. Current Gastroenterol Rep, 2018, 20(10): 45. DOI: 10.1007/s11894-018-0652-7.
2
Aydin MM, Akcali KC. Liver fibrosis[J]. Turk J Gastroenterol, 2018, 29(1): 14-21. DOI: 10.5152/tjg.2018.17330.
3
Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues[J]. Mol Aspects Med, 2019, 65(2): 37-55. DOI: 10.1016/j.mam.2018.09.002.
4
Tanaka T, Nishida H, Mie K, et al. Assessment of hepatitis and fibrosis using Gd-EOB-DTPA MRI in dogs[J]. Vet Rec Open, 2020, 7(1): e000371. DOI: 10.1136/vetreco-2019-000371.
5
Tapper EB, Lok AS. Use of liver imaging and biopsy in clinical practice[J]. N Engl J Med, 2017, 377(8): 756-768. DOI: 10.1056/NEJMc1712445.
6
Gheorghe G, Bungău S, Ceobanu G, et al. The non-invasive assessment of hepatic fibrosis[J]. J Formos Med Assoc, 2021, 120(2): 794-803. DOI: 10.1016/j.jfma.2020.08.019.
7
Haider MA, Farhadi FA, Milot L. Hepatic perfusion imaging: Concepts and application[J]. Magn Reson Imaging Clin N Am, 2010, 18(3): 465-475. DOI: 10.1016/j.mric.2010.07.009.
8
Semaan S, Vietti Violi N, Lewis S, et al. Hepatocellular carcinoma detection in liver cirrhosis: diagnostic performance of contrast-enhanced CT vs. MRI with extracellular contrast vs. gadoxetic acid[J]. Eur Radiol, 2020, 30(2): 1020-1030. DOI: 10.1007/s00330-019-06458-4.
9
Yang L, Ding Y, Rao S, et al. T1 mapping onGd-EOB-DTPA-enhanced MRI for the prediction of oxaliplatin-induced liver injury in a mouse model[J]. J Magn Reson Imaging, 2021, 53(3): 896-902. DOI: 10.1002/jmri.27377.
10
Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast‐enhanced T1-weighted MRI of a diffusable tracer: Standardized quantities and symbols[J]. J Magn Reson Imaging, 1999, 10(3): 223-232. DOI: 10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s.
11
Scheuer PJ, Maggi G. Hepatic fibrosis and collapse: histological distinction by orecin staining[J]. Histopathology, 1980, 4(5): 487-490. DOI: 10.1111/j.1365-2559.1980.tb02943.x.
12
Li X, Liu H, Wang R, et al. Gadoxetate-disodium-enhanced magnetic resonance imaging for liver fibrosis staging: a systematic review and meta-analysis[J]. Clin Radiol, 2020, 75(4): 311-319. DOI: 10.1016/j.crad.2019.11.001.
13
Cui E, Li Q, Wu J, et al. Combination of hepatocyte fraction and diffusion-weighted imaging as a predictor in quantitative hepatic fibrosis evaluation[J]. Abdom Radiol, 2020, 45(11): 3681-3689. DOI: 10.1007/s00261-020-02520-8.
14
Verloh N, Probst U, Utpatel K, et al. Influence of hepatic fibrosis and inflammation: Correlation between histopathological changes and Gd-EOB-DTPA-enhanced MR imaging[J]. PLoS One, 2019, 14(5): e215752. DOI: 10.1371/journal.pone.0215752.
15
Hectors SJ, Kennedy P, Huang K, et al. Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid–enhanced MRI[J]. Eur Radiol, 2020, 30(Suppl 1): 1-10. DOI: 10.1007/s00330-020-07475-4.
16
Yang M, Zhang Y, Zhao W, et al. Evaluation of liver function using liver parenchyma, spleen and portal vein signal intensities during the hepatobiliary phase in Gd-EOB-D TPA-enhanced MRI[J]. BMC Med Imaging, 2020, 20(1): 119. DOI: 10.1186/s12880-020-00519-7.
17
Masuzaki R, Kanda T, Sasaki R, et al. Noninvasive assessment of liver fibrosis: Current and future clinical and molecular perspectives[J]. Int J Mol Sci, 2020, 21(14): 4906. DOI: 10.3390/ijms21144906.
18
Liu H, Wang Q, Du Y, et al. Dynamic contrast-enhanced MRI with Gd-EOB-DTPA for the quantitative assessment of early-stage liver fibrosis induced by carbon tetrachloride in rabbits[J]. Magn Reson Imaging, 2020, 70(7): 57-63. DOI: 10.1016/j.mri.2020.04.010.
19
Li Z, Sun J, Chen L, et al. Assessment of liver fibrosis using pharmacokinetic parameters of dynamic contrast-enhanced magnetic resonance imaging[J]. J Magn Reson Imaging, 2016, 44(1): 98-104. DOI: 10.1002/jmri.25132.
20
Zhang W, Kong X, Wang ZJ, et al. Dynamic contrast-enhanced magnetic resonance imaging with Gd-EOB-DTPA for the evaluation of liver fibrosis induced by carbon tetrachloride in rats[J]. PLoS One, 2015, 10(6): e129621. DOI: 10.1371/journal.pone.0129621.
21
Ji Y, Zhang C, Huang Z, et al. Gd-EOB-DTPA DCE-MRI biomarkers in a rabbit model of liver fibrosis[J]. Am J Transl Res, 2018, 10(9): 2949-2957.
22
Zhou IY, Catalano OA, Caravan P. Advances in functional and molecular MRI technologies in chronic liver diseases[J]. J Hepatol, 2020, 73(5): 1241-1254. DOI: 10.1016/j.jhep.2020.06.020.

PREV Correlation analysis of sleep duration of normal elderly and cognitive function brain regions volumes
NEXT Acupuncture changes the functional connectivity of the right insula in asthma: A fMRI study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn