Share:
Share this content in WeChat
X
Experience Exchanges
Application value of DCE-MRI in tumor body, peritumoral edema area in grading diffuse glioma
WANG Ru  WANG Shaoyu  ZHANG Huapeng  GAO Yang 

Cite this article as: Wang R, Wang SY, Zhang HP, et al. Application value of DCE-MRI in tumor body, peritumoral edema area in grading diffuse glioma[J]. Chin J Magn Reson Imaging, 2021, 12(6): 88-91. DOI:10.12015/issn.1674-8034.2021.06.017.


[Abstract] Objective To investigate the perfusion characteristics of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in tumor body and peritumoral edema of patients with diffuse glioma and its clinical value in grading glioma, so as to provide a reliable surgical resection range. Materials andMethods According to the 2016 WHO glioma classification and grading criteria, patients were divided into low-grade glioma group (LGG group, Ⅱ grade) 17 cases and high-grade glioma group (HGG group, Ⅲ+Ⅳ grade) 27 cases. All patients underwent DCE-MRI before operation. The workstation performed DCE-MRI post-processing, and extracted two parameters: volume translocation constant (Ktrans) and extravascular extracellular space volume fraction (Ve). The tumor area, extra-tumor edema 1 cm, extra-tumor edema 1—2 cm area and contralateral hemisphere normal white area were the regions of interest, then measured the values of each parameter and analyzed the differences in high and low-grade gliomas. Spearman correlation coefficient was used to analyze the correlation between the parameters and pathological grade of diffuse glioma.Results The Ktrans and Ve in the tumor area and extratumoral edema of the HGG group were higher than those in the LGG group (Ktrans value compared, t=7.821, 9.468, 8.670, Ve value compared, t=4.411, 7.812, 2.544; P<0.05). The Ktrans and Ve of two groups in every region were decreasing from tumor area to normal white matter area. In the two groups, there was a statistically significant difference between the tumor area and the extra-tumor edema 1 cm, extra-tumor edema 1—2 cm area and the normal white matter area (HGG group: Ktrans value compared, t=5.845, 9.907, 10.654, Ve value compared, t=4.398, 8.194, 9.014; P<0.05; LGG group: Ktrans value compared, t=7.763, 8.085, 8.397, Ve value compared, t=6.719, 7.328, 7.370; P<0.05). In the HGG group, there was a statistically significant difference between the extra-tumor edema 1 cm and the extra-tumor edema 1—2 cm area, normal white matter area (Ktrans value compared, t=6.966, 7.780, Ve value compared, t=7.920, 8.053; P<0.05), there was no significant difference between the extra-tumor edema 1—2 cm area and the normal white matte area (Ktrans value compared, t=1.006, Ve value compared, t=0.617; P>0.05); in the LGG group, there was no statistically significant difference between the extra-tumor edema 1 cm area and the extra-tumor edema 1—2 cm area (Ktrans value compared, t=1.733, Ve value compared, t=1.751; P>0.05), between the extra-tumor edema 1 cm area and the normal white matter area (Ktrans value compared, t=2.012, Ve value compared, t=2.021; P>0.05), between the extra-tumor edema 1—2 cm area and the normal white matter area (Ktrans value compared, t=0.654, Ve value compared, t=1.184; P>0.05). Ktrans value and Ve value were positively correlated with pathological grade of diffuse glioma (r=0.811, 0.734, P<0.05).Conclusions DCE-MRI can improve the grade of tumor and guide the scope of clinical resection.
[Keywords] diffuse glioma;peritumoral edema;dynamic contrast enhanced;magnetic resonance imaging;grading;perfusion imaging

WANG Ru1   WANG Shaoyu2   ZHANG Huapeng2   GAO Yang1*  

1 Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

2 SIEMENS Healthineers, Shanghai 201318, China

Gao Y, E-mail: 1390903990@qq.com

Conflicts of interest   None.

This work was part of Science and Technology Project of Inner Mongolia Autonomous Region (No. 2019GG047).
Received  2020-12-13
Accepted  2021-02-25
DOI: 10.12015/issn.1674-8034.2021.06.017
Cite this article as: Wang R, Wang SY, Zhang HP, et al. Application value of DCE-MRI in tumor body, peritumoral edema area in grading diffuse glioma[J]. Chin J Magn Reson Imaging, 2021, 12(6): 88-91. DOI:10.12015/issn.1674-8034.2021.06.017.

1
Liu XY, Xiao DX, He YM, et al. Comparative study of combined application of DWI and PWI on intracerebral tumor and peritumoral edema[J]. J Clin Radiol, 2017, 36(7): 928-933. DOI: CNKI:SUN:LCFS.0.2017-07-004.
2
Almeida-Freitas DB, Pinho MC, Otaduy MCG, et al. Assessment of irradiated brain metastases using dynamic contrast-enhanced magnetic resonance imaging[J]. Neuroradiology, 2014, 56(6): 437-443. DOI: 10.1007/s00234-014-1344-0.
3
Kickingereder P, Wiestler B, Graf M, et al. Evaluation of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab[J]. Neurooncol, 2015, 12(2): 373-380. DOI: 10.1007/s11060-014-1644-6.
4
Nguyen TB, Cron GO, Perdrizet K, et al. Comparison of the diagnostic accuracy of DSC- and dynamic contrast-enhanced MRI in the preoperative grading of astrocytomas[J]. Am J Neuroradiol, 2015, 36(11): 235-249. DOI: 10.3174/ajnr.A4398.
5
Liang J, Liu D, Gao P, et al. Diagnostic values of DCE-MRI and DSC-MRI for differentiation between high-grade and low-grade gliomas: A comprehensive meta-analysis[J]. Acad Radiol, 2018, 25(3): 338-348. DOI: 10.1016/j.acra.2017.10.001.
6
Su CQ, Lu SS, Han QY, et al. Intergrating conventional MRI, texture analysis of dynamic contrast-enhanced MRI, and susceptibility weighted imaging for glioma grading[J]. Acta Radiologica, 2019, 60(6): 777-787. DOI: 10.1177/0284185118801127.
7
Jia ZZ. The application of two-compartment model analysis of dynamic contrast-enhanced magnetic resonance imaging in glioma[D]. Shanghai: Fudan Univ, 2012.
8
Zhang YJ. Application of DCE-MRI, 3D-ASL and DSC-PWI in the preoperative graded diagnosis of glioma[D]. Zhengzhou: Zhengzhou Univ, 2017.
9
Choi HS, Kim AH, Ahn SS, et al. Glioma grading capability: comparisons among parameters from dynamic contrast-enhanced MRI and ADC value on DWI[J]. Korean J Radiol, 2013, 14(3): 487-492. DOI: 10.3348/kjr.2013.14.3.487.
10
Ulyte A, Katsaros VK, Liouta E, et al. Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patients[J]. Neuroradiology, 2016, 58(12): 1197-1208. DOI: 10.1007/s00234-016-1741-7.
11
Lin J, Xia W, Qian W, et al. Effects of artery input function on dynamic contrast-enhanced MRI for determining grades of gliomas[J]. Br J Radiol, 2020, 17(10): 326-327. DOI: 10.1259/bjr.20200699.
12
Keil VC, Pintea B, Gielen GH, et al. Biopsy targeting with dynamic contrast-enhanced versus standard neuronavigation MRI in glioma: a prospective double-blinded evaluation of selection benefits[J]. J Neurooncol, 2017, 133(1): 155-163. DOI: 10.1007/s11060-017-2424-x.
13
Arevalo-perez J, Kebede AA, Peck KK, et al. Dynamic contrast-enhanced MRI in low-grade versus anaplastic oligodendrogliomas[J]. J Neuroimaging, 2017, 26(3): 366-371. DOI: 10.1111/jon.12320.
14
Nguyen TB, Cron GO, Mercier JF, et al. Preoperative prognostic value of dynamic contrast-enhanced MRI-derived contrast transfer coefficient and plasma volume in patients with cerebral gliomas[J]. AJNR Am J Neuroradiol, 2015, 36(1): 63-69. DOI: 10.3174/ajnr.A4006.
15
O'Neill AF, Qin L, Wen PY, et al. Demonstration of DCE-MRI as an early pharmacodynamic biomarker of response to VEGF Trap in glioblastoma[J]. J Neurooncol, 2016, 130(3): 495-503. DOI: 10.1007/s11060-016-2243-5.
16
Si X, Xiao H, Chuan S, et al. The antitumour growth and antiangiogenesis effects of xanthatin in murine glioma dynamically evaluated by dynamic contrast-enhanced magnetic resonance imaging[J]. Phytother Res, 2019, 33(1): 149-158. DOI: 10.1002/ptr.6207.
17
Cherry K, Ji-Yeon S, Changhoe H, et al. Spatiotemporal heterogeneity of tumor vasculature during tumor growth and antiangiogenic treatment: MRI assessment using permeability and blood volume parameters[J]. Cancer Med, 2018, 7(8): 3921-3934. DOI: 10.1002/cam4.1624.
18
Moran A, Gilad L, Deborah TB, et al. Differentiation between vasogenic edema and infiltrative tumor in patients with high-grade gliomas using texture patch-based analysis[J]. J Magn Reson Imagings, 2018, 48(1): 729-736. DOI: 10.1002/jmri.25939.
19
Hormuth DA, Jarrett AM, Yankeelov TE. Forecasting tumor and vasculature response dynamics to radiation therapy via image based mathematical modeling[J]. Radiation Oncol, 2020, 15(1): 401-402. DOI: 10.1186/s13014-019-1446-2.
20
Ningning D, Wenna C, Xingyue J, et al. Can dynamic contrast-enhanced MRI evaluate VEGF expression in brain glioma? An MRI-guided stereotactic biopsy study[J]. J Neuroradiol, 2018, 46(3): 186-192. DOI: 10.1007/s00234-016-1756-0.
21
Jiang JS, Hua Y, Zhou XJ, et al. Quantitative assessment of tumor cell proliferation in brain gliomas with dynamic contrast-enhanced MRI[J]. Acad Radiol, 2019, 26(9): 1215-1221. DOI: 10.1016/j.acra.2018.10.012.
22
Hou W, Xue Y, Tang W, et al. Evaluation of tumor hypoxia in C6 glioma rat model with dynamic contrast-enhanced magnetic resonance imaing[J]. Acad Radiol, 2019, 26(8): e224-e232. DOI: 10.1016/j.acra.2018.09.011.
23
Hormuth DA, Jarrett AM, Feng X, et al. Calibrating a predictive model of tumor growth and angiogenesis with quantitative MRI[J]. Ann Biomed, 2019, 47(7): 1539-1551. DOI: 10.1007/s10439-019-02262-9.
24
Wang X, Cao M, Chen H, et al. Simplified perfusion fraction from diffusion-weighted imaging in preoperative prediction of IDH1 mutation in WHO grade II-III gliomas: Comparison with dynamic contrast-enhanced and intravoxel incoherent motion MRI[J]. Radiol Oncol, 2020, 54(3): 301-310. DOI: 10.2478/raon-2020-0037.

PREV The value of identifying benign and malignant breast lesions based on the texture feature of Tirm sequence combined with time-intensity curve
NEXT The application of MRI guided breast localization and biopsy in breast lesions
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn