Share:
Share this content in WeChat
X
Reviews
Research progress of evaluating pancreatic fibrosis degree by multimodal magnetic resonance functional imaging
LIU Chang  SHI Yu 

Cite this article as: Liu C, Shi Y. Research progress of evaluating pancreatic fibrosis degree by multimodal magnetic resonance functional imaging[J]. Chin J Magn Reson Imaging, 2021, 12(6): 114-117. DOI:10.12015/issn.1674-8034.2021.06.024.


[Abstract] Pancreatic fibrosis is an important histological change in the repair of pancreatic injury caused by various reasons. Pancreatic fibrosis is closely related to the pathogenesis, therapeutic response and disease progression of pancreatic diseases such as chronic pancreatitis and pancreatic tumor. Early diagnosis of pancreatic fibrosis and early clinical intervention are of great significance for slowing down the disease and improving the prognosis of patients. In recent years, non-invasive examination methods, led by imaging examination, have developed rapidly in the diagnosis of pancreatic fibrosis, with magnetic resonance elastography as the focus. This article reviews the evaluation value of magnetic resonance elastography for pancreatic fibrosis.
[Keywords] pancreatic fibrosis;magnetic resonance elastography;intravoxel incoherent motion;diffusion weighted imaging;T1 mapping;magnetization transfer imaging

LIU Chang   SHI Yu*  

Department of Radiology, Shengjing Hospital, China Medical University, Shenyang 110004, China

Shi Y, E-mail: shiy@sj-hospital.org

Conflicts of interest   None.

This work was part of National Natural Science Foundation of China (No. 81771802, 81771893, 82071885).
Received  2021-02-02
Accepted  2021-03-18
DOI: 10.12015/issn.1674-8034.2021.06.024
Cite this article as: Liu C, Shi Y. Research progress of evaluating pancreatic fibrosis degree by multimodal magnetic resonance functional imaging[J]. Chin J Magn Reson Imaging, 2021, 12(6): 114-117. DOI:10.12015/issn.1674-8034.2021.06.024.

1
Liu YQ, Liu Y, Shi KN, et al. Intravoxel incoherent motion diffusion weighted imaging for the evaluation of pancreatic fibrosis: a preliminary study[J]. J Chin Clin Med Imaging, 2017, 28(10): 736-741. DOI: 10.3969/j.issn.1008-1062.2017.10.011.
2
Shi Y, Liu Y, Gao F, et al. Pancreatic stiffness quantified with MR elastography: Relationship to postoperative pancreatic fistula after pancreaticoenteric anastomosis[J]. Radiology, 2018, 288(2): 476-484. DOI: 10.1148/radiol.2018170450.
3
Chronic Pancreatitis Committee of Pancreatic Diseases Professional Committee of Chinese Medical Doctor Association. Guidelines for diagnosis and treatment of chronic pancreatitis (2018, Guangzhou)[J]. Chin J Pancreatol, 2018, 18(5): 289-296. DOI: 10.3760/cma.j.issn.1674-1935.2018.05.001.
4
Zhang T, Lu Y, Yang B, et al. Diffusion metrics for staging pancreatic fibrosis and correlating with epithelial-mesenchymal transition markers in a chronic pancreatitis rat model at 11.7 T MRI[J]. J Magn Reson Imaging, 2020, 52(1): 197-206. DOI: 10.1002/jmri.26995.
5
Bieliuniene E, Frøkjær JB, Pockevicius A, et al. Magnetic resonance imaging as a valid noninvasive tool for the assessment of pancreatic fibrosis[J]. Pancreas, 2019, 48(1): 85-93. DOI: 10.1097/MPA.0000000000001206.
6
Shi Y, Guo QY, Liao W, et al. MR diffusion weighted imaging for quantification of liver fibrosis in patients with chronic viral hepatitis[J]. Chin J Radiol, 2010, 44(1): 65-69. DOI: 10.3760/cma.j.issn.1005-1201.2010.01.017.
7
Trout AT, Wallihan DB, Serai S, et al. Secretin-enhanced magnetic resonance cholangiopancreatography for assessing pancreatic secretory function in children[J]. J Pediatr, 2017, 188(7): 186-191. DOI: 10.1016/j.jpeds.2017.06.031.
8
Jonczyk-Potoczna K, Nowak JK, Madry E, et al. Secretin-enhanced magnetic resonance cholangio-pancreatography in pancreatic insufficient and pancreatic sufficient cystic fibrosis patients[J]. J Gastrointestin Liver Dis, 2016, 25(1): 57-62. DOI: 10.15403/jgld.2014.1121.251.chp.
9
Shaw CB, Jensen JH. Recent computational advances in denoising for magnetic resonance diffusional kurtosis imaging (DKI)[J]. J Indian Inst Sci, 2017, 97(3): 377-390. DOI: 10.1007/s41745-017-0036-2.
10
Anderson SW, Barry B, Soto J, et al. Characterizing non-gaussian, high b-value diffusion in liver fibrosis: Stretched exponential and diffusional kurtosis modeling[J]. J Magn Reson Imaging, 2014, 39(4): 827-834. DOI: 10.1002/jmri.24234.
11
Yoshimaru D, Miyati T, Suzuki Y, et al. Diffusion kurtosis imaging with the breath-hold technique for staging hepatic fibrosis: A preliminary study[J]. Magn Reson Imaging, 2018, 47(4): 33-38. DOI: 10.1016/j.mri.2017.11.001.
12
Yang L, Rao S, Wang W, et al. Staging liver fibrosis with DWI: is there an added value for diffusion kurtosis imaging?[J]. Eur Radiol, 2018, 28(7): 3041-3049. DOI: 10.1007/s00330-017-5245-6.
13
Fang ZN, Li XH, Lin JJ, et al. Magnetisation transfer imaging adds information to conventional MRIs to differentiate inflammatory from fibrotic components of small intestinal strictures in Crohn's disease[J]. Eur Radiol, 2020, 30(4): 1938-1947. DOI: 10.1007/s00330-019-06594-x.
14
Li W, Zhang Z, Nicolai J, et al. Magnetization transfer MRI in pancreatic cancer xenograft models[J]. Magn Reson Med, 2012, 68(4): 1291-1297. DOI: 10.1002/mrm.24127.
15
Schawkat K, Eshmuminov D, Lenggenhager D, et al. Preoperative evaluation of pancreatic fibrosis and lipomatosis: Correlation of magnetic resonance findings with histology using magnetization transfer imaging and multigradient echo magnetic resonance imaging[J]. Invest Radiol, 2018, 53(12): 720-727. DOI: 10.1097/RLI.0000000000000496.
16
Spinner GR, Stoeck CT, Mathez L, et al. On probing intravoxel incoherent motion in the heart-spin-echo versus stimulated-echo DWI[J]. Magn Reson Med, 2019, 82(3): 1150-1163. DOI: 10.1002/mrm.27777.
17
Shin HJ, Yoon H, Kim MJ, et al. Liver intravoxel incoherent motion diffusion-weighted imaging for the assessment of hepatic steatosis and fibrosis in children[J]. World J Gastroenterol, 2018, 24(27): 3013-3020. DOI: 10.3748/wjg.v24.i27.3013.
18
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
19
Hecht EM, Liu MZ, Prince MR, et al. Can diffusion-weighted imaging serve as a biomarker of fibrosis in pancreatic adenocarcinoma?[J]. J Magn Reson Imaging, 2017, 46(2): 393-402. DOI: 10.1002/jmri.25581.
20
Kim KA, Park MS, Kim IS, et al. Quantitative evaluation of liver cirrhosis using T1 relaxation time with 3 tesla MRI before and after oxygen inhalation[J]. J Magn Reson Imaging, 2012, 36(2): 405-410. DOI: 10.1002/jmri.23620.
21
Wang M, Gao F, Wang X, et al. Magnetic resonance elastography and T1 mapping for early diagnosis and classification of chronic pancreatitis[J]. J Magn Reson Imaging, 2018, 48(3): 837-845. DOI: 10.1002/jmri.26008.
22
Shi Y, Gao F, Li Y, et al. Differentiation of benign and malignant solid pancreatic masses using magnetic resonance elastography with spin-echo echo planar imaging and three-dimensional inversion reconstruction: a prospective study[J]. Eur Radiol, 2018, 28(3): 936-945. DOI: 10.1007/s00330-017-5062-y.
23
Ji R, Li J, Yin Z, et al. Pancreatic stiffness response to an oral glucose load in obese adults measured by magnetic resonance elastography[J]. Magn Reson Imaging, 2018, 51(9): 113-119. DOI: 10.1016/j.mri.2018.04.019.
24
Liu Y, Shi Y, Yu B, et al. Comparison of MR elastography and dynamic contrast-enhanced imaging in evaluation on gastroesophageal varices with liver cirrhosis[J]. Chin J Med Imaging Technol, 2018, 34(1): 77-81. DOI: 10.13929/j.1003-3289.201703148.
25
Gharib AM, Han MAT, Meissner EG, et al. Magnetic resonance elastography shear wave velocity correlates with liver fibrosis and hepatic venous pressure gradient in adults with advanced liver disease[J]. Biomed Res Int, 2017, 2017: 2067479. DOI: 10.1155/2017/2067479.
26
Kolipaka A, Schroeder S, Mo X, et al. Magnetic resonance elastography of the pancreas: Measurement reproducibility and relationship with age[J]. Magn Reson Imaging, 2017, 42(10): 1-7. DOI: 10.1016/j.mri.2017.04.015.
27
Everett RJ, Treibel TA, Fukui M, et al. Extracellular myocardial volume in patients with aortic stenosis[J]. J Am Coll Cardiol, 2020, 75(3): 304-316. DOI: 10.1016/j.jacc.2019.11.032.
28
Yang S, Chen H, Tan K, et al. Secreted frizzled-related protein 2 and extracellular volume fraction in patients with heart failure[J]. Oxid Med Cell Longev, 2020, 2020: 2563508. DOI: 10.1155/2020/2563508.
29
Ugander M, Oki AJ, Hsu LY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology[J]. Eur Heart J, 2012, 33(10): 1268-1278. DOI: 10.1093/eurheartj/ehr481.
30
Tirkes T, Lin C, Cui E, et al. Quantitative MR evaluation of chronic pancreatitis: Extracellular volume fraction and MR relaxometry[J]. AJR Am J Roentgenol, 2018, 210(3): 533-542. DOI: 10.2214/AJR.17.18606.
31
Deng Y, Zhao B, Yang M, et al. Association between the incidence of pancreatic fistula after pancreaticoduodenectomy and the degree of pancreatic fibrosis[J]. J Gastrointest Surg, 2018, 22(3): 438-443. DOI: 10.1007/s11605-017-3660-3662.
32
Ammann RW, Muellhaupt B. Progression of alcoholic acute to chronic pancreatitis[J]. Gut, 1994, 35(4): 552-556. DOI: 10.1136/gut.35.4.552.
33
Marzoq AJ, Mustafa SA, Heidrich L, et al. Impact of the secretome of activated pancreatic stellate cells on growth and differentiation of pancreatic tumour cells[J]. Sci Rep, 2019, 9(1): 7-30. DOI: 10.1038/s41598-019-41740-x.
34
Sherman MH. Stellate cells in tissue repair, inflammation, and cancer[J]. Annu Rev Cell Dev Biol, 2018, 34(1): 333-355. DOI: 10.1146/annurev-cellbio-100617-062855.
35
Tanaka HY, Kitahara K, Sasaki N, et al. Pancreatic stellate cells derived from human pancreatic cancer demonstrate aberrant SPARC-dependent ECM remodeling in 3D engineered fibrotic tissue of clinically relevant thickness[J]. Biomaterials, 2019, 192(2): 355-367. DOI: 10.1016/j.biomaterials.2018.11.023.
36
Endo S, Nakata K, Ohuchida K, et al. Autophagy is required for activation of pancreatic stellate cells, associated with pancreatic cancer progression and promotes growth of pancreatic tumors in mice[J]. Gastroenterology, 2017, 152(6): 1492-1506. DOI: 10.1053/j.gastro.2017.01.010.
37
Pang TCY, Wilson JS, Apte MV. Pancreatic stellate cells: what's new?[J]. Curr Opin Gastroenterol, 2017, 33(5): 366-373. DOI: 10.1097/MOG.0000000000000378.
38
Liu HY, Greene T, Lin TY, et al. Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells[J]. Acta Biomater, 2017, 48: 258-269. DOI: 10.1016/j.actbio.2016.10.027.
39
Xue J, Sharma V, Hsieh MH, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis[J]. Nat Commun, 2015, 6(1): 274-277. DOI: 10.1038/ncomms8158.
40
Lew D, Afghani E, Pandol S. Chronic pancreatitis: Current status and challenges for prevention and treatment[J]. Dig Dis Sci, 2017, 62(7): 1702-1712. DOI: 10.1007/s10620-017-4602-2.
41
Singh VK, Yadav D, Garg PK. Diagnosis and management of chronic pancreatitis: A review[J]. JAMA, 2019, 322(24): 2422-2434. DOI: 10.1001/jama.2019.19411.
42
Di Leo M, Leandro G, Singh SK, et al. Low alcohol and cigarette use is associated to the risk of developing chronic pancreatitis[J]. Pancreas, 2017, 46(2): 225-229. DOI: 10.1097/MPA.0000000000000737.
43
Alahmari AA, Sreekumar B, Patel V, et al. Cigarette toxin 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces experimental pancreatitis through α7 nicotinic acetylcholine receptors (nAChRs) in mice[J]. PLoS One, 2018, 13(6): e0197362. DOI: 10.1371/journal.pone.0197362.
44
Zhang X, Xin J, Shi Y, et al. Assessing activation of hepatic stellate cells by (99m)Tc-3PRGD2 scintigraphy targeting integrin αvβ3: a feasibility study[J]. Nucl Med Biol, 2015, 42(3): 250-255. DOI: 10.1016/j.nucmedbio.2014.11.007.
45
Wellner UF, Kayser G, Lapshyn H, et al. A simple scoring system based on clinical factors related to pancreatic texture predicts postoperative pancreatic fistula preoperatively[J]. HPB(Oxford), 2010, 12(10): 696-702. DOI: 10.1111/j.1477-2574.2010.00239.x.
46
Kim Z, Kim MJ, Kim JH, et al. Prediction of post-operative pancreatic fistula in pancreaticoduodenectomy patients using pre-operative MRI: a pilot study[J]. HPB (Oxford), 2009, 11(3): 215-221. DOI: 10.1111/j.1477-2574.2009.00011.x.
47
Tirkes T, Yadav D, Conwell DL, et al. Magnetic resonance imaging as a non-invasive method for the assessment of pancreatic fibrosis (MINIMAP): a comprehensive study design from the consortium for the study of chronic pancreatitis, diabetes, and pancreatic cancer[J]. Abdom Radiol (NY), 2019, 44(8): 2809-2821. DOI: 10.1007/s00261-019-02049-5.

PREV Research progress on the application value of apparent diffusion coefficient of magnetic resonance imaging in the diagnosis and treatment of breast cancer
NEXT Current status and prospect of biparametric and multiparametric magnetic resonance imaging in the evaluation of prostate cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn