Share:
Share this content in WeChat
X
Original Article
Analysis of corticospinal tract injury in stroke based on a corticospinal tract template derived from healthy subjects
WEI Yu  YU Qiurong  YIN Dazhi  WANG Hewei  SUN Limin  XU Guojun  ZHAN Shuang  WANG Xuefei  GUO Miao  LIU Fan  FAN Mingxia 

Cite this article as: Wei Y, Yu QR, Yin DZ, et al. Analysis of corticospinal tract injury in stroke based on a corticospinal tract template derived from healthy subjects[J]. Chin J Magn Reson Imaging, 2021, 12(7): 39-44, 68. DOI:10.12015/issn.1674-8034.2021.07.008.


[Abstract] Objective To explore the relationship between diffusion parameters of corticospinal tract (CST) and motor dysfunction in stroke using diffusion tensor imaging (DTI). Materials andMethods DTI data were collected from 37 unilateral subcortical stroke patients and 30 healthy subjects (HCs). A CST template was generated from the CST of HCs which was tracked by using the probabilistic tractography. Based on the template, the diffusion parameters of fractional anisotropy (FA) and mean diffusivity (MD) were measured , further, the FA ratio (rFA), FA asymmetry (FAasy), MD ratio (rMD) and MD asymmetry (MDasy) were calculated to assess the CST impairments in stroke patients. Furthermore, the correlations of these CST diffusion parameters with Fugl-Meyer Assessment (FMA) were performed.Results Compared with HCs, FA of the ipsilesional CST and rFA decreased significantly (t=-15.775, t=-11.111, P<0.001, respectively) while FAasy increased significantly (t=9.473, P<0.001); MD of the ipsilesional CST and rMD increased significantly (t=9.553, t=7.733, P<0.001, respectively) while MDasy decreased significantly (t=-8.941, P<0.001); no significant differences of these diffusion parameters were observed in the contralesional CST (P>0.05). Neither disease duration nor lesion size was significantly correlated with these diffusion parameters (P>0.05). FA of the ipsilesional CST and rFA was positively correlated with "hand+wrist" and upper limb FMA (r=0.342, P=0.038; r=0.479, P=0.003; r=0.343, P=0.038; r=0.482, P=0.003, respectively), while FAasy was negatively correlated with "hand+wrist" and upper limb FMA (r=-0.353, P=0.032; r=-0.490, P=0.002, respectively). In addition, stepwise regression analysis revealed that the correlations between FAasy and "hand+wrist" and upper limb FMA was stronger than that with FA of the ipsilesional CST and rFA (Beta=-0.353, P=0.032; Beta=-0.490, P=0.002, respectively).Conclusions FA parameters derived from CST template may reflect CST microstructural integrity impairments following stroke. FAasy was closely related to the "hand+wrist" and upper limb FMA implying an important reference index for assessing motor dysfunction of the upper limbs and "hand+wrist" in stroke patients.
[Keywords] magnetic resonance imaging;diffusion tensor imaging;stroke;corticospinal tract;motor dysfunction

WEI Yu1   YU Qiurong1   YIN Dazhi2   WANG Hewei3   SUN Limin3   XU Guojun1   ZHAN Shuang1   WANG Xuefei1   GUO Miao1   LIU Fan1   FAN Mingxia1*  

1 Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai 200062, China

2 School of Psychology and Cognitive science, East China Normal University, Shanghai 200062, China

3 Huashan Hospital, Fudan University, Shanghai 200040, China

Fan MX, E-mail: mxfan@phy.ecnu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No. 81471651), the National Natural Science Foundation of China (No. 81974356), the Young National Natural Science Foundation of China (No. 81401859), the National Key R&D Program of China (No.2020YFC2004200).
Received  2021-04-28
Accepted  2021-05-27
DOI: 10.12015/issn.1674-8034.2021.07.008
Cite this article as: Wei Y, Yu QR, Yin DZ, et al. Analysis of corticospinal tract injury in stroke based on a corticospinal tract template derived from healthy subjects[J]. Chin J Magn Reson Imaging, 2021, 12(7): 39-44, 68. DOI:10.12015/issn.1674-8034.2021.07.008.

1
Welniarz Q, Dusart I, Roze E. The corticospinal tract: Evolution, development, and human disorders[J]. Dev Neurobiol, 2017, 77(7): 810-829. DOI: 10.1002/dneu.22455.
2
Xu AK, Gong Z, He YZ, et al. Comprehensive therapeutics targeting the corticospinal tract following spinal cord injury*[J]. J Zhejiang University Sci B, 2019, 20(3): 205-218. DOI: 10.1631/jzus.B1800280.
3
D' Imperio D, Romeo Z, Maistrello L, et al. Sensorimotor, attentional, and neuroanatomical predictors of upper limb motor deficits and rehabilitation outcome after stroke[J]. Neural Plasticity, 2021, 2021(4): 1-12. DOI: 10.1155/2021/8845685.
4
Adomaviien A, Daunoraviien K, Kubilius R, et al. Influence of new technologies on post-stroke rehabilitation: a comparison of armeo spring to the kinect system[J]. Medicina, 2019,55(4): 98-104. DOI: 10.3390/medicina55040098.
5
Paiva J. Diffusion tensor imaging biomarkers to predict motor outcomes in stroke: a narrative review[J]. Front Neurol, 2019, 10(8): 445-452. DOI: 10.3389/fneur.2019.00445.
6
Liang Z, Zeng J, Liu S, et al. A prospective study of secondary degeneration following subcortical infarction using diffusion tensor imaging[J]. J Neurol, Neurosurg Psychiatry, 2007, 78(6): 581-587. DOI: 10.1136/jnnp.2006.099077.
7
Puig J, Pedraza S, Blasco G, et al. Wallerian degeneration in the corticospinal tract evaluated by diffusion tensor imaging correlates with motor deficit 30 days after middle cerebral artery ischemic stroke[J]. Am J Neuroradiol, 2010, 31(7): 1324-1330. DOI: 10.3174/ajnr.a2038.
8
Zhang LH, Mi LX, Guo LJ, et al. Relationship between fractional anisotropy of corticospinal tract and motor function in stroke patients using diffusion tensor imaging[J]. Chin J Rehabili Theory Pract, 2017, 23(7): 802-806. DOI: 10.3969/j.issn.1006-9771.2017.07.014.
9
Lindenberg R, Renga V, Zhu LL, et al. Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke[J]. Neurology, 2010, 74(4): 280-287. DOI: 10.1212/WNL.0b013e3181ccc6d9.
10
Yu C, Zhu C, Zhang Y, et al. A longitudinal diffusion tensor imaging study on Wallerian degeneration of corticospinal tract after motor pathway stroke[J]. Neuroimage, 2009, 47(2): 451-458. DOI: 10.1016/j.neuroimage.2009.04.066.
11
Song F, Zhang F, Yin DZ, et al. Diffusion tensor imaging for predicting hand motor outcome in chronic stroke patients[J]. J Int Med Res, 2012, 40(1): 126-133. DOI: 10.1177/147323001204000113.
12
Sparrow SA, Devasuda A, Drake AJ, et al. Diffusion MRI parameters of corpus callosum and corticospinal tract in neonates: comparison between region-of-interest and whole tract averaged measurements[J]. Eur J Paediatr Neurol, 2018, 22(5): 807-813. DOI: 10.1016/j.ejpn.2018.05.003.
13
Park CH, Kou N, Boudrias MH, et al. Assessing a standardised approach to measuring corticospinal integrity after stroke with DTI[J]. Neuroimage, 2013, 2(2): 521-533. DOI: 10.1016/j.nicl.2013.04.002.
14
Zhu LL, Lindenberg R, Alexander MP, et al. Lesion load of the corticospinal tract predicts motor impairment in chronic stroke[J]. Stroke, 2010, 41(5): 910-915. DOI: 10.1161/STROKEAHA.109.577023.
15
Feng W, Wang J, Chhatbar PY, et al. Corticospinal tract lesion load: a potential imaging biomarker for stroke motor outcomes[J]. Ann Neurol, 2016, 78(6): 860-870. DOI: 10.1002/ana.24510.
16
Gao XJ, Tang CZ, Xu GJ, et al. Assessment value of disrupted corticospinal tract secondary to stroke lesion for motor impairment: a diffusion tensor tracking study[J]. Chin J Rehabili Theory Pract, 2018, 24(12): 1432-1437. DOI: 10.3969/j.issn.1006-9771.2018.12.015.
17
Hirsiger S, Koppelmans V, Mérillat S, et al. Structural and functional connectivity in healthy aging: associations for cognition and motor behavior[J]. Human Brain Mapping, 2016, 37(3): 855-867. DOI: 10.1002/hbm.23067.
18
Rimmele DL, Frey BM, Cheng B, et al. Association of extrapyramidal tracts' integrity with performance in fine motor skills after stroke[J]. Stroke, 2018, 49(12): 2928-2932. DOI: 10.1161/STROKEAHA.118.022706.
19
Haque ME, Hasan KM, George S, et al. Longitudinal neuroimaging evaluation of the corticospinal tract in patients with stroke treated with autologous bone marrow cells[J]. Stem Cells Transl Med, 2021, 3(10): 980-987. DOI: 10.1002/sctm.20-0369.
20
Puig J, Blasco G, Schlaug G, et al. Diffusion tensor imaging as a prognostic biomarker for motor recovery and rehabilitation after stroke[J]. Neuroradiology, 2017, 59(4): 1-9. DOI: 10.1007/s00234-017-1816-0.
21
Thomalla G, Glauche V, Koch MA, et al. Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke[J]. Neuroimage, 2004, 22(4): 1767-1774. DOI: 10.1016/j.neuroimage.2004.03.041.
22
Li B. The relevant research of corticospinal tract injury in patients with cerebral infarction and clinical prognosis with diffusion tensor imaging[D]. Hebei Medical University, 2015.
23
Borich MR, Wadden KP, Boyd LA. Establishing the reproducibility of two approaches to quantify white matter tract integrity in stroke[J]. Neuroimage, 2012, 59(3): 2393-2400. DOI: 10.1016/j.neuroimage.2011.09.009.
24
Takao H, Hayashi N, Ohtomo K. White matter microstructure asymmetry: effects of volume asymmetry on fractional anisotropy asymmetry[J]. Neuroscience, 2013, 231(5): 1-12. DOI: 10.1016/j.neuroscience.2012.11.038.
25
Kim B, Fisher BE, Schweighofer N, et al. A comparison of seven different DTI-derived estimates of corticospinal tract structural characteristics in chronic stroke survivors[J]. J Neurosci Method, 2018, 304(1): 66-75. DOI: 10.1016/j.jneumeth.2018.04.010.
26
Filatova OG, Van VLJ, Schouten AC, et al. Comparison of multi-tensor diffusion models' performance for white matter integrity estimation in chronic stroke[J]. Front Neurosci, 2018, 12(23): 247-252. DOI: 10.3389/fnins.2018.00247.
27
Qiu M, Darling WG, Morecraft RJ, et al. White matter integrity is a stronger predictor of motor function than BOLD response in patients with stroke[J]. Neurorehabili Neural Repair, 2011, 25(3): 275-284. DOI: 10.1177/1545968310389183.
28
Lewis AF, Myers M, Heiser J, et al. Test–retest reliability and minimal detectable change of corticospinal tract integrity in chronic stroke[J]. Human Brain Mapping, 2020, 41(9): 2514-2526. DOI: 10.1002/hbm.24961.
29
Ye Z, Gary SE, Sun P, et al. The impact of edema and fiber crossing on diffusion MRI metrics assessed in an ex vivo nerve phantom: multi‐tensor model vs. diffusion orientation distribution function [J]. NMR in Biomed, 2021, 34(1): 4414-4420. DOI: 10.1002/nbm.4414.

PREV The value of T2 mapping texture features of 3.0 T MRI in grading cartilage injury of knee osteoarthritis
NEXT Study of whole-liver histogram analysis based on Gd-EOB-DTPA hepatobiliary phase for evaluating liver fibrosis in rabbits
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn