Share:
Share this content in WeChat
X
Technical Article
Resting state functional magnetic resonance imaging of somatic symptom disorder based on fALFF and DC
CUI Yangyang  LIANG Huaibin  ZHU Qian  TANG Wei  GAO Tingting  LIU Jianren  DU Xiaoxia 

Cite this article as: Cui YY, Liang HB, Zhu Q, et al. Resting state functional magnetic resonance imaging of somatic symptom disorder based on fALFF and DC[J]. Chin J Magn Reson Imaging, 2021, 12(7): 51-54. DOI:10.12015/issn.1674-8034.2021.07.010.


[Abstract] Objective Using resting-state functional magnetic resonance image (rs-fMRI) combined with fractional amplitude of low-frequency fluctation (fALFF) and degree centrality (DC) to explore the change of brain function in patients with somatic symptom disorder (SSD), so that it will provide reference information for clinical treatment. Materials andMethods Forty five right-handed patients with somatic symptoms disorder and 43 right-handed healthy controls participated in rs-fMRI scanning. ALFF and DC analysis were used to detect the characteristics of spontaneous brain activity in SSD patients at resting-state. SPM 12 software was used to analyze fMRI data. The statistical threshold of fALFF and DC was voxel level (P<0.001) by two sample t-test. The cluster level was corrected by family wise error (FWE), P<0.05. When the cluster more than 10 voxels was reported.Results Patients with SSD showed increased fALFF values in limbic lobe, and thalamus compared with HCs. Besides, atients wit SSD showed decreased DC values in frontal lobe, cingulate gyrus.Conclusions These dysfunction areas seem to have a particular importance for the occurrence of SSD, which may result in dysfunction in emotional processing, interoception, and body perception.
[Keywords] somatic symptom disorder;fractional amplitude of low-frequency fluctation;degree centrality;functional magnetic resonance image

CUI Yangyang1   LIANG Huaibin2   ZHU Qian1   TANG Wei1   GAO Tingting1   LIU Jianren2*   DU Xiaoxia1*  

1 Shanghai Key Laboratory of Magnetic Resonance & Department of Physics,, School of physics and electronics, East China Normal University, Shanghai 200062, China

2 Department of Neurology, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

Du XX, E-mail: xxdu@phy.ecnu.edu.cn Liu JR E-mail: liujr021@sjtu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS This article research work obtained the National Natural Science Foundation of China (No. 81571658).
Received  2021-01-06
Accepted  2021-03-18
DOI: 10.12015/issn.1674-8034.2021.07.010
Cite this article as: Cui YY, Liang HB, Zhu Q, et al. Resting state functional magnetic resonance imaging of somatic symptom disorder based on fALFF and DC[J]. Chin J Magn Reson Imaging, 2021, 12(7): 51-54. DOI:10.12015/issn.1674-8034.2021.07.010.

1
Dorahy MJ. The diagnostic and statistical manual of mental disorders (DSM-5)[M]. 2014.
2
Dehoust MC, Schulz H, Härter M, et al. Prevalence and correlates of somatoform disorders in the elderly: results of a European study[J]. Int J Methods Psychiatr Res, 2017, 26(1): e1550. DOI: 10.1002/mpr.1550.
3
Cao J, Wei J, Fritzsche K, et al. Prevalence of DSM-5 somatic symptom disorder in Chinese outpatients from general hospital care[J]. Gen Hosp Psychiatry, 2019, 62: 63-71. DOI: 10.1016/j.genhosppsych.2019.11.010.
4
Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
5
Qinji S, Dapeng Y, Muliang J, et al. Dissociation of regional activity in default mode network in medication-naive, first-episode somatization disorder[J]. PLoS One, 2014, 9(7): e99273. DOI: 10.1371/journal.pone.0099273.eCollection2014.
6
Franciotti R, Pizzi SD, Russo M, et al. Somatic symptoms disorders in Parkinson's disease are related to default mode and salience network dysfunction[J]. Neuroimage Clin, 2019, 23: 101932. DOI: 10.1016/j.nicl.2019.101932.
7
Chen Y, Wu Y, Mu J, et al. Abnormal fear circuits activities correlated to physical symptoms in somatic anxiety patients[J]. J Affect Disord, 2020, 274: 54-58. DOI: 10.1016/j.jad.2020.05.036.
8
Habas C, Manto M, Cabaraux P. The Cerebellar thalamus[J]. Cerebellum, 2019, 18(3):635-648. DOI: 10.1007/s12311-019-01019-3.
9
Herrero MT, Barcia C, Navarro JM. Functional anatomy of thalamus and basal ganglia[J]. Childs Nerv Syst, 2002, 18(8): 386-404. DOI: 10.1007/s00381-002-0604-1.
10
Noseda R, Jakubowski M, Kainz V, et al. Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms[J]. J Neurosci, 2011, 31(40): 14204-14217. DOI: 10.1523/JNEUROSCI.3285-11.2011.
11
Noseda R, Kainz V, Jakubowski M, et al. A neural mechanism for exacerbation of headache by light[J]. Nat Neurosci, 2010, 13(2): 239-245. DOI: 10.1038/nn.2475.
12
Gharaei S, Honnuraiah S, Arabzadeh E, et al. Superior colliculus modulates cortical coding of somatosensory information[J]. Nat Commun, 2020, 11(1): 1693. DOI: 10.1038/s41467-020-15443-1.
13
Sheffield JM, Huang AS, Rogers BP, et al. Thalamocortical anatomical connectivity in schizophrenia and psychotic bipolar disorder[J]. Schizophr Bull, 2020, 46(1-2): 1062-1071. DOI: 10.1093/schbul/sbaa022.
14
Onofrj M, Espay AJ, Bonanni L, et al. Hallucinations, somatic‐functional disorders of PD‐DLB as expressions of thalamic dysfunction[J]. Mov Disord, 2019, 34(8): 1100-1111. DOI: 10.1002/mds.27781.
15
Delvecchio G, Rossetti MG, Caletti E, et al. The neuroanatomy of somatoform disorders: a magnetic resonance imaging study[J]. Psychosomatics, 2019: 60(3): 278-288. DOI: 10.1016/j.psym.2018.07.005.
16
Rossetti MG, Delvecchio G, Calati R, et al. Structural neuroimaging of somatoform disorders: a systematic review[J]. Neurosci Biobehav Rev, 2021, 122: 66-78. DOI: 10.1016/j.neubiorev.2020.12.017.
17
Li Q, Xiao Y, Li Y, et al. Altered regional brain function in the treatment-naive patients with somatic symptom disorder: a resting-state fMRI study[J]. Brain Behav, 2016, 6(10):e00521. DOI: 10.1002/brb3.521.
18
Huang T, Zhao Z, Yan C, et al. Altered spontaneous activity in patients with persistent somatoform pain disorder revealed by regional homogeneity[J]. PLoS One, 2016, 11(3): e0151360. DOI: 10.1371/journal.pone.0151360.
19
Catani M. The anatomy of the human frontal lobe[J]. Handb Clin Neurol, 2019, 163: 95-122. DOI: 10.1016/B978-0-12-804281-6.00006-9.
20
Ospina JP, Jalilianhasanpour R, Perez DL. The role of the anterior and midcingulate cortex in the neurobiology of functional neurologic disorder[J]. Hand Clin Neurol, 2019, 166: 267-279. DOI: 10.1016/B978-0-444-64196-0.00014-5.
21
Burkhouse KL, Kujawa A, Hosseini B, et al. Anterior cingulate activation to implicit threat before and after treatment for pediatric anxiety disorders[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 84(Pt A): 250-256. DOI: 10.1016/j.pnpbp.2018.03.013.
22
Evans KC, Simon NM, Dougherty DD, et al. A PET study of tiagabine treatment implicates ventral medial prefrontal cortex in generalized social anxiety disorder[J]. Neuropsychopharmacology, 2008, 34(2): 390-398. DOI: 10.1038/npp.2008.69.
23
Mochcovitch MD, da Rocha Freire RC, Garcia RF, et al. A systematic review of fMRI studies in generalized anxiety disorder: evaluating its neural and cognitive basis[J]. J Affect Disord, 2014, 167: 336-342. DOI: 10.1016/j.jad.2014.06.041.
24
Valet M, Sprenger T, Boecker H, et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain: an FMR1 analysis[J]. Pain, 2004, 109(3): 399-408. DOI: 10.1016/j.pain.2004.02.033.

PREV Study of whole-liver histogram analysis based on Gd-EOB-DTPA hepatobiliary phase for evaluating liver fibrosis in rabbits
NEXT Multiparameters of DWI and DCE-MRI in differentiation between parotid Warthin tumor and pleomorphic adenoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn