Share:
Share this content in WeChat
X
Review
Advances in repetitive transcranial magnetic stimulation and magnetic resonance imaging in depression
YANG Keshuo  LIU Xiaoxiao  BAI Yan  WANG Meiyun  CHEN Chuanliang 

Cite this article as: Yang KS, Liu XX, Bai Y, et al. Advances in repetitive transcranial magnetic stimulation and magnetic resonance imaging in depression[J]. Chin J Magn Reson Imaging, 2021, 12(7): 90-93. DOI:10.12015/issn.1674-8034.2021.07.021.


[Abstract] Depression, as a mood disorder, has become the main course of global disability. It has affected more than 300 million people worldwide and can even lead to suicide in severe cases. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive antidepressant therapy, can improve the symptoms of patients with depression by using pulsed magnetic fields, which can act on the central nervous system to affect brain metabolism and neuroelectrical activity. This article summarizes from these following aspects——the therapeutic targets and modes of rTMS and the effect evaluation of rTMS through magnetic resonance imaging, in order to improve the understanding of rTMS in ameliorating the core symptoms of depression.
[Keywords] depression;repetitive transcranial magnetic stimulation;core symptom;magnetic resonance imaging

YANG Keshuo1   LIU Xiaoxiao2   BAI Yan1   WANG Meiyun1   CHEN Chuanliang1*  

1 Department of Medical Imaging, Zhengzhou University People's Hospital, Henan Province People's Hospital, Zhengzhou 450003, China

2 Department of Medical Imaging, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou 450003, China

Chen CL, E-mail: henanccl@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This article is supported by the National Key R&D Program of China (NO. 2017YFE0103600). National Natural Science Foundation of China (NO. 81720108021)
Received  2021-04-09
Accepted  2021-05-08
DOI: 10.12015/issn.1674-8034.2021.07.021
Cite this article as: Yang KS, Liu XX, Bai Y, et al. Advances in repetitive transcranial magnetic stimulation and magnetic resonance imaging in depression[J]. Chin J Magn Reson Imaging, 2021, 12(7): 90-93. DOI:10.12015/issn.1674-8034.2021.07.021.

1
Kessler RC. The costs of depression[J]. Psychiatr Clin North Am, 2012, 35(1): 1-14. DOI: 10.1016/j.psc.2011.11.005.
2
Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report[J]. Am J Psychiatry, 2006, 163(11): 1905-1917. DOI: 10.1176/ajp.2006.163.11.1905.
3
Fitzgerald PB, Hoy KE, Anderson RJ, et al. A study of the pattern of response to rTMS treatment in depression[J]. Depress Anxiety, 2016, 33(8): 746-753. DOI: 10.1002/da.22503.
4
George MS. Whither TMS: a one-trick pony or the beginning of a neuroscientific revolution[J]. Am J Psychiatry, 2019, 176(11): 904-910. DOI: 10.1176/appi.ajp.2019.19090957.
5
Lisanby SH. Noninvasive brain stimulation for depression: the devil is in the dosing[J]. New Engl J Med, 2017, 376(26): 2593-2594. DOI: 10.1056/NEJMe1702492.
6
Balderston NL, Vytal KE, O'connell K, et al. Anxiety patients show reduced working memory related dlPFC activation during safety and threat[J]. Depress Anxiety, 2017, 34(1): 25-36. DOI: 10.1002/da.22518.
7
Davis SW, Luber B, Murphy DLK, et al. Frequency-specific neuromodulation of local and distant connectivity in aging and episodic memory function[J]. Hum Brain Mapp, 2017, 38(12): 5987-6004. DOI: 10.1002/hbm.23803.
8
Luber BM, Davis S, Bernhardt E, et al. Using neuroimaging to individualize TMS treatment for depression: toward a new paradigm for imaging-guided intervention[J]. NeuroImage, 2017, 148: 1-7. DOI: 10.1016/j.neuroimage.2016.12.083.
9
Brunoni AR, Chaimani A, Moffa AH, et al. Repetitive transcranial magnetic stimulation for the acute treatment of major depressive episodes: a systematic review with network Meta-analysis[J]. JAMA Psychiatry, 2017, 74(2): 143-152. DOI: 10.1001/jamapsychiatry.2016.3644.
10
O'Reardon JP, Solvason HB, Janicak PG, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial[J]. Biol Psychiatry, 2007, 62(11): 1208-1216. DOI: 10.1016/j.biopsych.2007.01.018.
11
Voineskos D, Blumberger DM, Zomorrodi R, et al. Altered transcranial magnetic stimulation-electroencephalographic markers of inhibition and excitation in the dorsolateral prefrontal cortex in major depressive disorder[J]. Biol Psychiatry, 2019, 85(6): 477-486. DOI: 10.1016/j.biopsych.2018.09.032.
12
Cash RFH, Weigand A, Zalesky A, et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression[J]. Biol Psychiatry, 2020, S0006-3223(20): 31668-1. DOI: 10.1016/j.biopsych.2020.05.033.
13
Cash RFH, Zalesky A, Thomson RH, et al. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: independent validation and evaluation of personalization[J]. Biol Psychiatry, 2019, 86(2): e5-e7. DOI: 10.1016/j.biopsych.2018.12.002.
14
Weigand A, Horn A, Caballero R, et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites[J]. Biol Psychiatry, 2018, 84(1): 28-37. DOI: 10.1016/j.biopsych.2017.10.028.
15
Siddiqi SH, Trapp NT, Hacker CD, et al. Repetitive transcranial magnetic stimulation with resting-state network targeting for treatment-resistant depression in traumatic brain injury: a randomized, controlled, double-blinded pilot study[J]. J Neurotrauma, 2019, 36(8): 1361-1374. DOI: 10.1089/neu.2018.5889.
16
Singh A, Erwin-Grabner T, Sutcliffe G, et al. Personalized repetitive transcranial magnetic stimulation temporarily alters default mode network in healthy subjects[J]. Scientific reports, 2019, 9(1): 5631. DOI: 10.1038/s41598-019-42067-3.
17
Drysdale AT, Grosenick L, Downar J, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression[J]. Nat Med, 2017, 23(1): 28-38. DOI: 10.1038/nm.4246.
18
Siddiqi SH, Taylor SF, Cooke D, et al. Distinct symptom-specific treatment targets for circuit-based neuromodulation[J]. Am J Psychiatry, 2020, 177(5): 435-446. DOI: 10.1176/appi.ajp.2019.19090915.
19
Downar J. Orbitofrontal cortex: a 'non-rewarding' new treatment target in depression?[J]. Current biology, 2019, 29(2): R59-r62. DOI: 10.1016/j.cub.2018.11.057.
20
Cash RFH, Cocchi L, Lv J, et al. Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression[J]. JAMA Psychiatry, 2021, 78(3): 337-339. DOI: 10.1001/jamapsychiatry.2020.3794.
21
Nestor SM, Blumberger DM. Mapping symptom clusters to circuits: toward personalizing tms targets to improve treatment outcomes in depression[J]. Am J Psychiatry, 2020, 177(5): 373-375. DOI: 10.1176/appi.ajp.2020.20030271.
22
Balderston NL, Roberts C, Beydler EM, et al. A generalized workflow for conducting electric field-optimized, fMRI-guided, transcranial magnetic stimulation[J]. Nat Protoc, 2020, 15(11): 3595-3614. DOI: 10.1038/s41596-020-0387-4.
23
Ning L, Makris N, Camprodon JA, et al. Limits and reproducibility of resting-state functional MRI definition of DLPFC targets for neuromodulation[J]. Brain Stimul, 2019, 12(1): 129-138. DOI: 10.1016/j.brs.2018.10.004.
24
Cash RFH, Cocchi L, Lv J, et al. Personalized connectivity-guided DLPFC-TMS for depression: advancing computational feasibility, precision and reproducibility[J]. Hum Brain Mapp, 2021. [ DOI: ]. DOI: 10.1002/hbm.25330.
25
Hamilton JP, Farmer M, Fogelman P, et al. Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience[J]. Biol Psychiatry, 2015, 78(4): 224-230. DOI: 10.1016/j.biopsych.2015.02.020.
26
Kaiser RH, Andrews-Hanna JR, Wager TD, et al. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity[J]. JAMA Psychiatry, 2015, 72(6): 603-611. DOI: 10.1001/jamapsychiatry.2015.0071.
27
Liston C, Chen AC, Zebley BD, et al. Default mode network mechanisms of transcranial magnetic stimulation in depression[J]. Biol Psychiatry, 2014, 76(7): 517-526. DOI: 10.1016/j.biopsych.2014.01.023.
28
Feffer K, Fettes P, Giacobbe P, et al. 1Hz rTMS of the right orbitofrontal cortex for major depression: Safety, tolerability and clinical outcomes[J]. Eur Neuropsychopharmacol, 2018, 28(1): 109-117. DOI: 10.1016/j.euroneuro.2017.11.011.
29
Scangos KW, Makhoul GS, Sugrue LP, et al. State-dependent responses to intracranial brain stimulation in a patient with depression[J]. Nat Med, 2021, 27(2): 229-231. DOI: 10.1038/s41591-020-01175-8.
30
Miron JP, Feffer K, Cash RFH, et al. Safety, tolerability and effectiveness of a novel 20 Hz rTMS protocol targeting dorsomedial prefrontal cortex in major depression: an open-label case series[J]. Brain Stimul, 2019, 12(5): 1319-1321. DOI: 10.1016/j.brs.2019.06.020.
31
Downar J, Daskalakis ZJ. New targets for rTMS in depression: a review of convergent evidence[J]. Brain Stimul, 2013, 6(3): 231-240. DOI: 10.1016/j.brs.2012.08.006.
32
Cho SS, Koshimori Y, Aminian K, et al. Investing in the future: stimulation of the medial prefrontal cortex reduces discounting of delayed rewards[J]. Neuropsychopharmacology, 2015, 40(3): 546-553. DOI: 10.1038/npp.2014.211.
33
Levkovitz Y, Isserles M, Padberg F, et al. Efficacy and safety of deep transcranial magnetic stimulation for major depression: a prospective multicenter randomized controlled trial[J]. World Psychiatry, 2015, 14(1): 64-73. DOI: 10.1002/wps.20199.
34
Leuchter AF, Cook IA, Feifel D, et al. Efficacy and safety of low-field synchronized transcranial magnetic stimulation (sTMS) for treatment of major depression[J]. Brain Stimul, 2015, 8(4): 787-794. DOI: 10.1016/j.brs.2015.05.005.
35
Bakker N, Shahab S, Giacobbe P, et al. rTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation[J]. Brain Stimul, 2015, 8(2): 208-215. DOI: 10.1016/j.brs.2014.11.002.
36
Berlim MT, Mcgirr A, Dos Santos NR, et al. Efficacy of theta burst stimulation (TBS) for major depression: an exploratory meta-analysis of randomized and sham-controlled trials[J]. J Psychiatry Res, 2017, 90: 102-109. DOI: 10.1016/j.jpsychires.2017.02.015.
37
Williams NR, Sudheimer KD, Bentzley BS, et al. High-dose spaced theta-burst TMS as a rapid-acting antidepressant in highly refractory depression[J]. Brain, 2018, 141(3): e18. DOI: 10.1093/brain/awx379.
38
Blumberger DM, Vila-Rodriguez F, Thorpe KE, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial[J]. Lancet, 2018, 391(10131): 1683-1692. DOI: 10.1016/s0140-6736(18)30295-2.
39
Cole EJ, Stimpson KH, Bentzley BS, et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression[J]. Am J Psychiatry, 2020, 177(8): 716-726. DOI: 10.1176/appi.ajp.2019.19070720.
40
Carpenter LL, Philip NS. The future is now? Rapid advances by brain stimulation innovation[J]. Am J Psychiatry, 2020, 177(8): 654-656. DOI: 10.1176/appi.ajp.2020.20060844.
41
Aizenstein HJ, Khalaf A, Walker SE, et al. Magnetic resonance imaging predictors of treatment response in late-life depression[J]. J Geriatr Psychiatry Neurol, 2014, 27(1): 24-32. DOI: 10.1177/0891988713516541.
42
Li BJ, Friston K, Mody M, et al. A brain network model for depression: from symptom understanding to disease intervention[J]. CNS Neurosci Ther, 2018, 24(11): 1004-1019. DOI: 10.1111/cns.12998.
43
Tik M, Hoffmann A, Sladky R, et al. Towards understanding rTMS mechanism of action: Stimulation of the DLPFC causes network-specific increase in functional connectivity[J]. Neuroimage, 2017, 162: 289-296. DOI: 10.1016/j.neuroimage.2017.09.022.
44
Sharma A, Wolf DH, Ciric R, et al. Common dimensional reward deficits across mood and psychotic disorders: a connectome-wide association study[J]. Am J Psychiatry, 2017, 174(7): 657-666. DOI: 10.1176/appi.ajp.2016.16070774.
45
Lenz M, Galanis C, Müller-Dahlhaus F, et al. Repetitive magnetic stimulation induces plasticity of inhibitory synapses[J]. Nat Communi, 2016, 7: 10020. DOI: 10.1038/ncomms10020.
46
Kinjo M, Wada M, Nakajima S, et al. Transcranial magnetic stimulation neurophysiology of patients with major depressive disorder: a systematic review and meta-analysis[J]. Psychol Med, 2021, 51(1): 1-10. DOI: 10.1017/s0033291720004729.
47
George MS, Wassermann EM, Williams WA, et al. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression[J]. Neuroreport, 1995, 6(14): 1853-1856. DOI: 10.1097/00001756-199510020-00008.
48
Pascual-Leone A, Rubio B, Pallardó F, et al. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression[J]. Lancet, 1996, 348(9022): 233-237. DOI: 10.1016/s0140-6736(96)01219-6.
49
Paus T, Jech R, Thompson CJ, et al. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex[J]. J Neurosci, 1997, 17(9): 3178-3184. DOI: 10.1523/jneurosci.17-09-03178.1997.
50
Rastogi A, Cash R, Dunlop K, et al. Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation[J]. Neuroimage, 2017, 158: 48-57. DOI: 10.1016/j.neuroimage.2017.06.048.
51
Hawco C, Voineskos AN, Steeves JKE, et al. Spread of activity following TMS is related to intrinsic resting connectivity to the salience network: A concurrent TMS-fMRI study[J]. Cortex, 2018, 108: 160-72. DOI: 10.1016/j.cortex.2018.07.010.
52
Termenon M, Jaillard A, Delon-Martin C, et al. Reliability of graph analysis of resting state fMRI using test-retest dataset from the human connectome project[J]. Neuroimage, 2016, 142: 172-187. DOI: 10.1016/j.neuroimage.2016.05.062.
53
Riva-Posse P, Choi KS, Holtzheimer PE, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression[J]. Molecular psychiatry, 2018, 23(4): 843-849. DOI: 10.1038/mp.2017.59.
54
Hadas I, Zomorrodi R, Hill AT, et al. Subgenual cingulate connectivity and hippocampal activation are related to MST therapeutic and adverse effects[J]. Transl Psychiatry, 2020, 10(1): 392. DOI: 10.1038/s41398-020-01042-7.
55
Mcmullen DP. Where to target? The precision medicine approach to brain stimulation[J]. Biol Psychiatry, 2018, 84(1): e1-e2. DOI: 10.1016/j.biopsych.2018.04.010.
56
Hadas I, Sun Y, Lioumis P, et al. Association of repetitive transcranial magnetic stimulation treatment with subgenual cingulate hyperactivity in patients with major depressive disorder: a secondary analysis of a randomized clinical trial[J]. JAMA Netw Open, 2019, 2(6): e195578. DOI: 10.1001/jamanetworkopen.2019.5578.
57
Philip NS, Barredo J, Van 'T Wout-Frank M, et al. Network mechanisms of clinical response to transcranial magnetic stimulation in posttraumatic stress disorder and major depressive disorder[J]. Biological psychiatry, 2018, 83(3): 263-272. DOI: 10.1016/j.biopsych.2017.07.021.
58
Du L, Liu H, Du W, et al. Stimulated left DLPFC-nucleus accumbens functional connectivity predicts the anti-depression and anti-anxiety effects of rTMS for depression[J]. Transl Psychiatry, 2018, 7(11): 3. DOI: 10.1038/s41398-017-0005-6.

PREV Pleomorphic hyalinizing angiectatic tumor of soft parts: a case report
NEXT Advances in imaging study on grading and typing of meningiomas
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn