Share:
Share this content in WeChat
X
Review
Research progress of DTI quantification in myelopathy
CUI Yunan  MIAO Yanwei 

Cite this article as: Cui YN, Miao YW. Research progress of DTI quantification in myelopathy[J]. Chin J Magn Reson Imaging, 2021, 12(7): 102-104, 109. DOI:10.12015/issn.1674-8034.2021.07.024.


[Abstract] At present, there are many limitations in spinal magnetic resonance imaging. In recent years, with the application of diffusion tensor imaging (DTI), the quality of spinal imaging has been improved, and quantitative measurement has become possible, and it has been gradually applied in the diagnosis of various spinal diseases. In this paper, DTI imaging of spinal cord was studied in healthy spinal cord, amyotrophic lateral sclerosis (ALS), spinal cord compression, myelitis, multiple sclerosis. The applications of spinal cord injury (SCI), spinal cord injury (MS) and tumor were reviewed. DTI imaging of spinal cord can not only quantitatively describe the diffuse characteristics of healthy spinal cord, but also early diagnose various spinal cord diseases and define the lesion range, monitor the progress of the disease and evaluate the postoperative recovery.
[Keywords] myelopathy;diffusion tensor imaging;amyotrophic lateral sclerosis;spinal cord compression;myelitis;multiple sclerosis;spinal cord injuries;spinal cord neoplasms

CUI Yunan   MIAO Yanwei*  

Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Miao YW, E-mail: ywmiao716@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This article is supported by the National Natural Science Foundation of China (No. 81671646).
Received  2021-03-31
Accepted  2021-05-08
DOI: 10.12015/issn.1674-8034.2021.07.024
Cite this article as: Cui YN, Miao YW. Research progress of DTI quantification in myelopathy[J]. Chin J Magn Reson Imaging, 2021, 12(7): 102-104, 109. DOI:10.12015/issn.1674-8034.2021.07.024.

1
Oertel FC, Scheel M, Chien C, et al. Differential diagnostics of autoimmune inflammatory spinal cord diseases[J]. Nervenarzt, 2021, 92(4): 293-306. DOI: 10.1007/s00115-021-01092-2.
2
Iwasaki M, Yokohama T, Oura D, et al. Decreased value of highly accurate fractional anisotropy using 3-tesla ZOOM diffusion tensor imaging after decompressive surgery in patients with cervical spondylotic myelopathy: aligned fibers effect[J]. World Neurosurg X, 2019, 4: 100056. DOI: 10.1016/j.wnsx.2019.100056.
3
Habas C. Fondements physiques élémentaires de la tractographie en tenseur de diffusion [Basic principles of diffusion tensor MR tractography[J]. J Radiol, 2004, 85(3): 281-286. DOI: 10.1016/s0221-0363(04)97579-8.
4
Laganà M, Rovaris M, Ceccarelli A, et al. DTI parameter optimisation for acquisition at 1.5 T: SNR analysis and clinical application[J]. Comput Intell Neurosci, 2010, 2010: 254032. DOI: 10.1155/2010/254032.
5
Goodlett CB, Fletcher PT, Gilmore JH, et al. Group analysis of DTI fiber tract statistics with application to neurodevelopment[J]. Neuroimage, 2009, 45(Suppl 1): S133-142. DOI: 10.1016/j.neuroimage.2008.10.060.
6
Kubicki M, Westin CF, McCarley RW, et al. The application of DTI to investigate white matter abnormalities in schizophrenia[J]. Ann N Y Acad Sci, 2005, 1064: 134-148. DOI: 10.1196/annals.1340.024.
7
Jeong EK, Kim SE, Guo J, et al. High-resolution DTI with 2D interleaved multislice reduced FOV single-shot diffusion-weighted EPI (2D ss-rFOV-DWEPI)[J]. Magn Reson Med, 2005, 54(6): 1575-1579. DOI: 10.1002/mrm.20711.
8
Smith TB, Nayak KS. Reduced field of view MRI with rapid, B1-robust outer volume suppression[J]. Magn Reson Med, 2012, 67(5): 1316-1323. DOI: 10.1002/mrm.23116.
9
Zaharchuk G, Saritas EU, Andre JB, et al. Reduced field-of-view diffusion imaging of the human spinal cord: comparison with conventional single-shot echo-planar imaging[J]. AJNR Am J Neuroradiol, 2011, 32(5): 813-820. DOI: 10.3174/ajnr.A2418.
10
Yang CH, Wei LF, Xue L. Correlation between age and cervical spinal cord diffusion tensor imaging parameters in normal subjects[J]. Functional and Molecular Medical Imaging (Electr), 2017, 6(4): 1302-1307. DOI: 10.3969/j.issn.2095-2252.2017.04.003.
11
Wei LF, Wang SS, Zheng ZC, et al. Characteristics of normal diffusion tensor imaging parameters of cervical spinal cord[J]. Chin J Med Imaging, 2016, 24(2): 91-95. DOI: 10.3969/j.issn.1005-5185.2016.02.003.
12
Wang K, Song Q, Zhang F, et al. Age-related changes of the diffusion tensor imaging parameters of the normal cervical spinal cord[J]. Eur J Radiol, 2014, 83(12): 2196-2202. DOI: 10.1016/j.ejrad.2014.09.010.
13
Vedantam A, Jirjis MB, Schmit BD, et al. Characterization and limitations of diffusion tensor imaging metrics in the cervical spinal cord in neurologically intact subjects[J]. J Magn Reson Imaging, 2013, 38(4): 861-867. DOI: 10.1002/jmri.24039.
14
Singhi S, Tekes A, Thurnher M, et al. Diffusion tensor imaging of the maturing paediatric cervical spinal cord:from the neonate to the young adult[J]. J Neuroradiol, 2017, 5(2): 1-29. DOI: 10.1016/j.neurad.2011.05.002.
15
Chang Y, Jung TD, Yoo DS, et al. Diffusion tensor imaging and fiber tractography of patients with cervical spinal cord injury[J]. J Neurotrauma, 2010, 27(11): 2033-2040. DOI: 10.1089/neu.2009.1265.
16
Brander A, Koskinen E, Luoto TM, et al. Diffusion tensor imaging of the spinal cord in healthy adult population:normative values and measurement reproducibility at 3 T MRI[J]. Acta Radiol, 2014, 55(4): 478-485. DOI: 10.1177/0284185113499752.
17
McColl MA, Charlifue S, Glass C, et al. Aging, gender, and spinal cord injury[J]. Arch Phys Med Rehabil, 2004, 85(3): 363-367. DOI: 10.1016/j.apmr.2003.06.022.
18
Manconi M, Rocca MA, Ferini-Strambi, et al. Restless legs syndrome is a common finding in multiple sclerosis and correlates with cervical cord damage[J]. Mult Scler, 2008, 14(1): 86-93. DOI: 10.1177/1352458507080734.
19
Chen X, Kong C, Feng S, et al. Magnetic resonance diffusion tensor imaging of cervical spinal cord and lumbosacral enlargement in patients with cervical spondylotic myelopathy[J]. J Magn Reson Imaging, 2016, 43(6): 1484-1491. DOI: 10.1002/jmri.25109.
20
Chang Y, Jung TD, Yoo DS, et al. Diffusion tensor imaging and fiber tractography of patients with cervical spinal cord injury[J]. J Neurotrauma, 2010, 27(11): 2033-2040. DOI: 10.1089/neu.2009.1265.
21
Nair G, Carew JD, Usher S, et al. Diffusion tensor imaging reveals regional differences in the cervical spinal cord in amyotrophic lateral sclerosis[J]. Neuroimage, 2010, 53(2): 576-583. DOI: 10.1016/j.neuroimage.2010.06.060.
22
Patzig M, Bochmann, Lutz J, et al. Measurement of structural integrity of the spinal cord in patients with amyotrophic lateral sclerosis using diffusion tensor magnetic resonance imaging[J]. PLoS One, 2019, 14(10): e0224078. DOI: 10.1371/journal.pone.0224078.
23
Wang Y, Liu L, Ma L, et al. Preliminary study on cervical spinal cord in patients with amyotrophic lateral sclerosis using MR diffusion tensor imaging[J]. Acad Radiol, 2014, 21(5): 590-596. DOI: 10.1016/j.acra.2014.01.014.
24
Rasoanandrianina H, Grapperon AM, Taso M, et al. Region-specific impairment of the cervical spinal cord (SC) in amyotrophic lateral sclerosis: a preliminary study using SC templates and quantitative MRI (diffusion tensor imaging/inhomogeneous magnetization transfer)[J]. NMR Biomed, 2017, 30(12): 3081. DOI: 10.1002/nbm.3801.
25
Nischal N, Tripathi S, Singh JP. Quantitative evaluation of the diffusion tensor imaging matrix parameters and the subsequent correlation with the clinical assessment of disease severity in cervical spondylotic myelopathy[J]. Asian Spine J, 2020. [ DOI: ]. DOI: 10.31616/asj.2020.0223.
26
Cui L, Kong C, Chen X, et al. Changes in diffusion tensor imaging indices of the lumbosacral enlargement correlate with cervical spinal cord changes and clinical assessment in patients with cervical spondylotic myelopathy[J]. Clin Neurol Neurosurg, 2019, 186: 105282. DOI: 10.1016/j.clineuro.2019.02.014.
27
Rajasekaran S, Yerramshetty JS, Chittode VS, et al. The assessment of neuronal status in normal and cervical spondylotic myelopathy using diffusion tensor imaging[J]. Spine, 2014, 39(15): 1183-1189. DOI: 10.1097/BRS.0000000000000369.
28
Shim E, Lee E, Lee JW, et al. Feasibility of postoperative 3-tesla diffusion tensor imaging in cervical spondylotic myelopathy: a comparison of single-shot EPI and multi-shot EPI[J]. Eur J Radiol, 2020, 122: 108751. DOI: 10.1016/j.ejrad.2019.108751.
29
Zheng W, Chen H, Wang N, et al. Application of diffusion tensor imaging cutoff value to evaluate the severity and postoperative neurologic recovery of cervical spondylotic myelopathy[J]. World Neurosurg, 2018, 118: e849-e855. DOI: 10.1016/j.wneu.2018.07.067.
30
Iwasaki M, Yokohama T, Oura D, et al. Decreased value of highly accurate fractional anisotropy using 3-tesla ZOOM diffusion tensor imaging after decompressive surgery in patients with cervical spondylotic myelopathy: aligned fibers effect[J]. World Neurosurg, 2019, 4: 100056. DOI: 10.1016/j.wnsx.2019.100056.
31
Dong F, Wu Y, Song P, et al. A preliminary study of 3.0-T magnetic resonance diffusion tensor imaging in cervical spondylotic myelopathy[J]. Eur Spine J, 2018, 27(8): 1839-1845. DOI: 10.1007/s00586-018-5579-z.
32
Shabani S, Kaushal M, Budde M, et al. Comparison between quantitative measurements of diffusion tensor imaging and T2 signal intensity in a large series of cervical spondylotic myelopathy patients for assessment of disease severity and prognostication of recovery[J]. J Neurosurg Spine, 2019: 1-7. DOI: .]. DOI: 10.3171/2019.3.SPINE181328.
33
Rao A, Soliman H, Kaushal M, et al. Diffusion tensor imaging in a large longitudinal series of patients with cervical spondylotic myelopathy correlated with long-term functional outcome[J]. Neurosurgery, 2018, 83(4): 753-760. DOI: 10.1093/neuros/nyx558.
34
Lee JW, Park KS, Kim JH, et al. Diffusion tensor imaging in idiopathic acute transverse myelitis[J]. AJR Am J Roentgenol, 2008, 191(2): W52-W57. DOI: 10.2214/AJR.07.2800.
35
Barakat N, Mulcahey MJ, Shah P, et al. Diffusion tensor imaging in pediatric transverse myelitis: a case study[J]. J Pediatr Rehabilit Med, 2012. 5(4): 281-286. DOI: 10.3233/PRM-2012-00222.
36
von Meyenburg J, Wilm BJ, Weck A, et al. Spinal cord diffusion-tensor imaging and motor-evoked potentials in multiple sclerosis patients: microstructural and functional asymmetry[J]. Radiology, 2013, 267(3): 869-879. DOI: 10.1148/radiol.13112776.
37
Lee CY, Huisinga JM, Choi IY, et al. Correlation between spinal cord diffusion tensor imaging and postural response latencies in persons with multiple sclerosis: a pilot study[J]. Magn Reson Imaging, 2020, 66: 226-231. DOI: 10.1016/j.mri.2019.11.004.
38
Lewis MJ, Early PJ, Mariani CL, et al. Influence of duration of injury on diffusion tensor imaging in acute canine spinal cord injury[J]. J Neurotrauma, 2020, 37(21): 2261-2267. DOI: 10.1089/neu.2019.6786.
39
Zhu F, Liu Y, Zeng L, et al. Evaluating the severity and prognosis of acute traumatic cervical spinal cord injury: a novel classification using diffusion tensor imaging and diffusion tensor tractography[J]. Spine, 2020, 46(10):687-694. DOI: 10.1097/BRS.0000000000003923.
40
Chen B, Tan Q, Zhao W, et al. Diffusion tensor imaging and electrophysiology as robust assays to evaluate the severity of acute spinal cord injury in rats[J]. BMC Neurol, 2020, 20(1): 236. DOI: 10.1186/s12883-020-01778-1.
41
Kim SY, Shin MJ, Chang JH, et al. Correlation of diffusion tensor imaging and phase-contrast MR with clinical parameters of cervical spinal cord injuries[J]. Spinal Cord, 2015, 53(8): 608-614. DOI: 10.1038/sc.2015.57.
42
Wang-Leandro A, Hobert MK, Alisauskaite N, et al. Spontaneous acute and chronic spinal cord injuries in paraplegic dogs: a comparative study of in vivo diffusion tensor imaging[J]. Spinal Cord, 2017, 55(12): 1108-1116. DOI: 10.1038/sc.2017.83.
43
Liu X, Tian W, Kolar B, et al. Advanced MR diffusion tensor imaging and perfusion weighted imaging of intramedullary tumors and tumor like lesions in the cervicomedullary junction region and the cervical spinal cord[J]. J Neurooncol, 2014, 116(3): 559-566. DOI: 10.1007/s11060-013-1323-z.
44
Liu X, Germin BI, Ekholm S. A case of cervical spinal cord glioblastoma diagnosed with MR diffusion tensor and perfusion imaging[J]. J Neuroimaging, 2011, 21(3): 292-296. DOI: 10.1111/j.1552-6569.2009.00459.x.
45
Antherieu P, Levy R, De Saint Denis T, et al. Diffusion tensor imaging (DTI) and tractography of the spinal cord in pediatric population with spinal lipomas: preliminary study[J]. Childs Nerv Syst, 2019, 35(1): 129-137. DOI: 10.1007/s00381-018-3935-2.
46
Maj E, Szemplińska B, Szeszkowski W, et al. Role of diffusion tensor imaging parameters in the characterization and differentiation of infiltrating and non-infiltrating spinal cord tumors: preliminary study[J]. Clin Neuroradiol, 2020, 30(4): 739-747. DOI: 10.1007/s00062-019-00851-8.
47
Zhao M, Shi B, Chen T, et al. Axial MR diffusion tensor imaging and tractography in clinical diagnosed and pathology confirmed cervical spinal cord astrocytoma[J]. J Neurol Sci, 2017, 375: 43-51. DOI: 10.1016/j.jns.2017.01.044.
48
Scullen T, Riffle J, Koga S, et al. Novel technique of coregistered intraoperative computed tomography and preoperative magnetic resonance imaging and diffusion tensor imaging navigation in spinal cord tumor resection[J]. Ochsner J, 2019, 19(1): 43-48. DOI: 10.31486/toj.18.0107.

PREV MRI research progress of white matter lesions and related vascular cognitive impairment
NEXT Research progress of PET/MR imaging of carotid atherosclerotic plaque
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn