Share:
Share this content in WeChat
X
Review
Current status of whole-body magnetic resonance imaging in prostate cancer
ZHANG Peipei  MIN Xiangde  WANG Liang 

Cite this article as: Zhang PP, Min XD, Wang L. Current status of whole-body magnetic resonance imaging in prostate cancer[J]. Chin J Magn Reson Imaging, 2021, 12(7): 121-124. DOI:10.12015/issn.1674-8034.2021.07.029.


[Abstract] The incidence of prostate cancer in China is increasing year by year. Metastatic prostate cancer accounts for a large proportion of newly diagnosed prostate cancer patients. Determining the metastatic burden of prostate cancer is critical for the selection of treatment methods and predicting prostate cancer prognosis. Whole-body magnetic resonance imaging (WB-MRI) can accurately assess the metastatic burden of prostate cancer and the treatment efficacy. Compared with positron emission tomography and computed tomography (PET-CT), WB-MRI has the advantages of low price, non-invasive, non-radiation, and no need for contrast agent. This article mainly reviews the application status of WB-MRI in prostate cancer and provides references for the clinical application and further research of WB-MRI.
[Keywords] magnetic resonance imaging;whole-body magnetic resonance imaging;prostate cancer;fast imaging;deep learning

ZHANG Peipei   MIN Xiangde   WANG Liang*  

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Wang L, E-mail: wang6@tjh.tjmu.edu.cn

Conflicts of interest   None.

Received  2021-01-12
Accepted  2021-02-02
DOI: 10.12015/issn.1674-8034.2021.07.029
Cite this article as: Zhang PP, Min XD, Wang L. Current status of whole-body magnetic resonance imaging in prostate cancer[J]. Chin J Magn Reson Imaging, 2021, 12(7): 121-124. DOI:10.12015/issn.1674-8034.2021.07.029.

1
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
2
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
3
Yang YJ, Dai B, Ye DW, et al. The predictive value of CTCs characterization for time to castration resistance of high-volume metastatic castration sensitive prostate cancer[J]. Chin J Urol, 2019, 40(9): 661-667. DOI: 10.3760/cma.j.issn.1000-6702.2019.09.005.
4
Sun BX, Zhang H, Zhang XX, et al. Advances in magnetic resonance imaging in the diagnosis of prostate cancer[J]. Chin J Magn Reson Imaging, 2019, 10(12): 947-950. DOI: 10.12015/issn.1674-8034.2019.12.017.
5
Stabile A, Giganti F, Rosenkrantz AB, et al. Multiparametric MRI for prostate cancer diagnosis: current status and future directions[J]. Nat Rev Urol, 2020, 17(1): 41-61. DOI: 10.1038/s41585-019-0212-4.
6
Futterer JJ, Briganti A, De Visschere P, et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature[J]. Eur Urol, 2015, 68(6): 1045-1053. DOI: 10.1016/j.eururo.2015.01.013.
7
Robertson NL, Sala E, Benz M, et al. Combined whole body and multiparametric prostate magnetic resonance imaging as a 1-step approach to the simultaneous assessment of local recurrence and metastatic disease after radical prostatectomy[J]. J Urol, 2017, 198(1): 65-70. DOI: 10.1016/j.juro.2017.02.071.
8
Albano D, Bruno A, Patti C, et al. Whole-body magnetic resonance imaging (WB-MRI) in lymphoma: state of the art[J]. Hematol Oncol, 2020, 38(1): 12-21. DOI: 10.1002/hon.2676.
9
Hynes JP, Hughes N, Cunningham P, et al. Whole-body MRI of bone marrow: a review[J]. J Magn Reson Imaging, 2019, 50(6): 1687-1701. DOI: 10.1002/jmri.26759.
10
Taylor SA, Mallett S, Miles A, et al. Whole-body MRI compared with standard pathways for staging metastatic disease in lung and colorectal cancer: the Streamline diagnostic accuracy studies[J]. Health Technol Assess, 2019, 23(66): 1-270. DOI: 10.3310/hta23660.
11
Petralia G, Padhani A, Summers P, et al. Whole-body diffusion-weighted imaging: is it all we need for detecting metastases in melanoma patients?[J]. Eur Radiol, 2013, 23(12): 3466-3476. DOI: 10.1007/s00330-013-2968-x.
12
Petralia G, Padhani AR, Pricolo P, et al. Whole-body magnetic resonance imaging (WB-MRI) in oncology: recommendations and key uses[J]. Radiol Med, 2019, 124(3): 218-233. DOI: 10.1007/s11547-018-0955-7.
13
Lecouvet FE. Whole-Body MR imaging: musculoskeletal applications[J]. Radiology, 2016, 279(2): 345-365. DOI: 10.1148/radiol.2016142084.
14
Padhani AR, Lecouvet FE, Tunariu N, et al. METastasis reporting and data system for prostate cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer[J]. Eur Urol, 2017, 71(1): 81-92. DOI: 10.1016/j.eururo.2016.05.033.
15
Gillessen S, Attard G, Beer TM, et al. Management of patients with advanced prostate cancer: the report of the advanced prostate cancer consensus conference APCCC 2017[J]. Eur Urol, 2018, 73(2): 178-211. DOI: 10.1016/j.eururo.2017.06.002.
16
Padhani AR, Lecouvet FE, Tunariu N, et al. Rationale for modernising imaging in advanced prostate cancer[J]. Eur Urol Focus, 2017, 3(2-3): 223-239. DOI: 10.1016/j.euf.2016.06.018.
17
Sun YY, Guo Z, Yang XL, et al. Meta-analysis of positron emission tomography-CT and diffusion weighted imaging in lymph node staging of prostate cancer patients[J]. Chin J Radiol, 2015, 49(4): 301-305. DOI: 10.3760/cma.j.issn.1005-1201.2015.04.015.
18
Lecouvet FE, Oprea-Lager DE, Liu Y, et al. Use of modern imaging methods to facilitate trials of metastasis-directed therapy for oligometastatic disease in prostate cancer: a consensus recommendation from the EORTC imaging group[J]. Lancet Oncol, 2018, 19(10): e534-e545. DOI: 10.1016/S1470-2045(18)30571-0.
19
Johnston EW, Latifoltojar A, Sidhu HS, et al. Multiparametric whole-body 3.0-T MRI in newly diagnosed intermediate- and high-risk prostate cancer: diagnostic accuracy and interobserver agreement for nodal and metastatic staging[J]. Eur Radiol, 2019, 29(6): 3159-3169. DOI: 10.1007/s00330-018-5813-4.
20
Metser U, Chan R, Veit-Haibach P, et al. Comparison of MRI sequences in whole-body PET/MRI for staging of patients with high-risk prostate cancer[J]. AJR Am J Roentgenol, 2019, 212(2): 377-381. DOI: 10.2214/AJR.18.20495.
21
Perez-Lopez R, Mateo J, Mossop H, et al. Diffusion-weighted imaging as a treatment response biomarker for evaluating bone metastases in prostate cancer: a pilot study[J]. Radiology, 2017, 283(1): 168-177. DOI: 10.1148/radiol.2016160646.
22
Razek AA, Tawfik A, Rahman MA, et al. Whole-body diffusion-weighted imaging with background body signal suppression in the detection of osseous and extra-osseous metastases[J]. Pol J Radiol, 2019, 84: e453-e458. DOI: 10.5114/pjr.2019.90057.
23
Adeleke S, Latifoltojar A, Sidhu H, et al. Localising occult prostate cancer metastasis with advanced imaging techniques (LOCATE trial): a prospective cohort, observational diagnostic accuracy trial investigating whole-body magnetic resonance imaging in radio-recurrent prostate cancer[J]. BMC Med Imaging, 2019, 19(1): 90. DOI: 10.1186/s12880-019-0380-y.
24
Sawicki LM, Kirchner J, Buddensieck C, et al. Prospective comparison of whole-body MRI and (68) Ga-PSMA PET/CT for the detection of biochemical recurrence of prostate cancer after radical prostatectomy[J]. Eur J Nucl Med Mol Imaging, 2019, 46(7): 1542-1550. DOI: 10.1007/s00259-019-04308-5.
25
Iwamura H, Kaiho Y, Ito J, et al. Evaluation of tumor viability for primary and bone metastases in metastatic castration-resistant prostate cancer using whole-body magnetic resonance imaging[J]. Case Rep Urol, 2018, 2018: 4074378. DOI: 10.1155/2018/4074378.
26
Jacobs MA, Macura KJ, Zaheer A, et al. Multiparametric whole-body MRI with diffusion-weighted imaging and ADC mapping for the identification of visceral and osseous metastases from solid tumors[J]. Acad Radiol, 2018, 25(11): 1405-1414. DOI: 10.1016/j.acra.2018.02.010.
27
Wu C, Huang J, Xu WB, et al. Discriminating depth of response to therapy in multiple myeloma using whole-body diffusion-weighted MRI with apparent diffusion coefficient: preliminary results from a single-center study[J]. Acad Radiol, 2018, 25(7): 904-914. DOI: 10.1016/j.acra.2017.12.008.
28
Zhang Y, Xiong X, Fu Z, et al. Whole-body diffusion-weighted MRI for evaluation of response in multiple myeloma patients following bortezomib-based therapy: a large single-center cohort study[J]. Eur J Radiol, 2019, 120: 108695. DOI: 10.1016/j.ejrad.2019.108695.
29
Lecouvet FE, Pasoglou V, Van Nieuwenhove S, et al. Shortening the acquisition time of whole-body MRI: 3D T1 gradient echo dixon vs fast spin echo for metastatic screening in prostate cancer[J]. Eur Radiol, 2020, 30(6): 3083-3093. DOI: 10.1007/s00330-019-06515-y.
30
Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magn Reson Med, 2002, 47(6): 1202-1210. DOI: 10.1002/mrm.10171.
31
Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE: sensitivity encoding for fast MRI[J]. Magn Reson Med, 1999, 42(5): 952-962.
32
Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195. DOI: 10.1002/mrm.21391.
33
Chen C, Liu Y, Schniter P, et al. Sparsity adaptive reconstruction for highly accelerated cardiac MRI[J]. Magn Reson Med, 2019, 81(6): 3875-3887. DOI: 10.1002/mrm.27671.
34
Wang S, Su Z, Ying L, et al. Accelerating magnetic resonance imaging via deep learning[J]. Proc IEEE Int Symp Biomed Imaging, 2016, 2016: 514-517. DOI: 10.1109/ISBI.2016.7493320.
35
Yang G, Yu S, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction[J]. IEEE Trans Med Imaging, 2018, 37(6): 1310-1321. DOI: 10.1109/TMI.2017.2785879.
36
Schlemper J, Caballero J, Hajnal JV, et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction[J]. IEEE Trans Med Imaging, 2018, 37(2): 491-503. DOI: 10.1109/TMI.2017.2760978.
37
Hong Y, Chen G, Yap PT, et al. Multifold Acceleration of Diffusion MRI via Deep Learning Reconstruction from Slice-Undersampled Data[C]. Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science. Hong Kong: Springer, 2019, 11492: 530-541. DOI: 10.1007/978-3-030-20351-1_41.DOI:10.1007/978-3-030-20351-1_41.
38
Zhu B, Liu JZ, Cauley SF, et al. Image reconstruction by domain-transform manifold learning[J]. Nature, 2018, 555(7697): 487-492. DOI: 10.1038/nature25988.
39
Dong C, Loy CC, He K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans Pattern Anal Mach Intell, 2016, 38(2): 295-307. DOI: 10.1109/TPAMI.2015.2439281.
40
Liu PF, Zhao HC, Liu MD. Image super-resolution based on convolutional neural network[J]. Comput Eng Appl, 2019, 55(09): 197-202. DOI: 10.3778/j.issn.1002-8331.1801-0072.

PREV Application progress of MR radiomics in neoadjuvant chemotherapy for breast cancer
NEXT Study on cerebral perfusion changes in patients with Parkinson,s disease with different motor subtypes by using arterial spin labeling technique
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn