Share:
Share this content in WeChat
X
Review
Research progress of artificial intelligence in MRI diagnosis of glioma
ZHAO Weiwei  SUN Jing  ZHU Jingqi 

Cite this article as: Zhao WW, Sun J, Zhu JQ. Research progress of artificial intelligence in MRI diagnosis of glioma[J]. Chin J Magn Reson Imaging, 2021, 12(8): 88-90. DOI:10.12015/issn.1674-8034.2021.08.019.


[Abstract] Glioma is the most common primary intracranial tumor with invasive growth, which is difficult to be completely removed by surgery. The cure rate of distant metastasis and insensitive to radiotherapy and chemotherapy is very low, and the recurrence rate is high. The long-term survival rate of patients is only 20%. MRI is the preferred method for the examination of brain glioma, and MRI-based multimodal imaging technology plays a key role in the diagnosis and differential diagnosis of brain glioma, pre-treatment evaluation, surgical navigation and post-treatment follow-up. However, for less experienced radiologists and those not trained in brain tumor MRI diagnostic system, the incidence of misdiagnosis and the missed diagnosis was significantly increased. In addition, radiologists often experience physical and mental fatigue in the face of a large number of MRI images, which reduces diagnostic accuracy. Therefore, how to liberate radiologists from the traditional reading of MRI images has become a concern. Artificial intelligence is used to simulate human thinking and efficiently carry out data mining and integration, so as to realize accurate diagnosis and differential diagnosis of digital medicine has developed rapidly. Extracting image information which is difficult to be effectively recognized by human eyes from image big data, and analyzing this information to diagnose disease and establish prediction model has become a technology with broad application prospects. In this paper, the research progress of artificial intelligence in MRI diagnosis of brain glioma is reviewed in order to improve the understanding of artificial intelligence in differential diagnosis of brain glioma.
[Keywords] artificial intelligence;glioma;magnetic resonance imaging

ZHAO Weiwei1   SUN Jing1   ZHU Jingqi2*  

1 Putuo People's Hospital, Tongji University, Shanghai 200060, China

2 Tenth People's Hospital of Tongji University, Shanghai 200072, China

Zhu JQ, E-mail: melvine0305@sina.com

Conflicts of interest   None.

Received  2021-01-10
Accepted  2021-02-22
DOI: 10.12015/issn.1674-8034.2021.08.019
Cite this article as: Zhao WW, Sun J, Zhu JQ. Research progress of artificial intelligence in MRI diagnosis of glioma[J]. Chin J Magn Reson Imaging, 2021, 12(8): 88-90. DOI:10.12015/issn.1674-8034.2021.08.019.

1
Wen PY, Huse JT. 2016 World Health Organization classification of central nervous system tumors[J]. Continuum (Minneap Minn), 2017, 23(6): 1531-1547. DOI: 10.1212/CON.0000000000000536.
2
Thust SC, Heiland S, Falini A, et al. Glioma imaging in Europe: A survey of 220 centres and recommendations for best clinical practice[J]. Eur Radiol, 2018, 28(8): 3306-3317. DOI: 10.1007/s00330-018-5314-5.
3
Booth TC, Williams M, Luis A, et al. Machine learning and glioma imaging biomarkers[J]. Clin Radiol, 2020, 75(1): 20-32. DOI: 10.1016/j.crad.2019.07.001.
4
Marti-Bonmati L, Alberich-Bayarri A, Ladenstein R, et al. PRIMAGE project: predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers[J]. Eur Radiol Exp, 2020, 4(1): 22. DOI: 10.1186/s41747-020-00150-9.
5
Shaver MM, Kohanteb PA, Chiou C, et al. Optimizing neuro-oncology imaging: A review of deep learning approaches for glioma imaging[J]. Cancers (Basel), 2019, 11(6): 829. DOI: 10.3390/cancers11060829.
6
Lotan E, Jain R, Razavian N, et al. State of the art: Machine learning applications in glioma imaging[J]. AJR Am J Roentgenol, 2019, 212(1): 26-37. DOI: 10.2214/AJR.18.20218.
7
Senders JT, Harary M, Stopa BM, et al. Information-based medicine in glioma patients: A clinical perspective[J]. Comput Math Methods Med, 2018, 2018: 8572058. DOI: 10.1155/2018/8572058.
8
Haubold J, Demircioglu A, Gratz M, et al. Non-invasive tumor decoding and phenotyping of cerebral gliomas utilizing multiparametric (18)F-FET PET-MRI and MR Fingerprinting[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1435-1445. DOI: 10.1007/s00259-019-04602-2.
9
Zhuge Y, Ning H, Mathen P, et al. Automated glioma grading on conventional MRI images using deep convolutional neural networks[J]. Med Phys, 2020, 47(7): 3044-3053. DOI: 10.1002/mp.14168.
10
Gates E, Lin JS, Weinberg JS, et al. Imaging-based algorithm for the local grading of glioma[J]. AJNR Am J Neuroradiol, 2020, 41(3): 400-407. DOI: 10.3174/ajnr.A6405.
11
Ahammed MK, Rajendran VR, Glioma PJK. Tumor grade identification using artificial intelligent techniques[J]. J Med Syst, 2019, 43(5): 113. DOI: 10.1007/s10916-019-1228-2.
12
Sengupta A, Agarwal S, Gupta PK, et al. On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images[J]. Eur J Radiol, 2018, 106: 199-208. DOI: 10.1016/j.ejrad.2018.07.018.
13
Jung JS, Choi YS, Ahn SS, et al. Differentiation between spinal cord diffuse midline glioma with histone H3 K27M mutation and wild type: comparative magnetic resonance imaging[J]. Neuroradiology, 2019, 61(3): 313-322. DOI: 10.1007/s00234-019-02154-8.
14
Su X, Chen N, Sun H, et al. Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain[J]. Neuro Oncol, 2020, 22(3): 393-401. DOI: 10.1093/neuonc/noz184.
15
Zhao J, Huang Y, Song Y, et al. Diagnostic accuracy and potential covariates for machine learning to identify IDH mutations in glioma patients: evidence from a meta-analysis[J]. Eur Radiol, 2020, 30(8): 4664-4674. DOI: 10.1007/s00330-020-06717-9.
16
Kim M, Jung SY, Park JE, et al. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma[J]. Eur Radiol, 2020, 30(4): 2142-2151. DOI: 10.1007/s00330-019-06548-3.
17
Park CJ, Choi YS, Park YW, et al. Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status[J]. Neuroradiology, 2020, 62(3): 319-326. DOI: 10.1007/s00234-019-02312-y.
18
Holly KS, Fitz-Gerald JS, Barker BJ, et al. Differentiation of high-grade glioma and intracranial metastasis using volumetric diffusion tensor imaging tractography[J]. World Neurosurg, 2018, 120: e131-e141. DOI: 10.1016/j.wneu.2018.07.230.
19
Luts J, Suykens JAK, Van Huffel S, et al. Differentiation between brain metastases and glioblastoma multiforme based on MRI, MRS and MRSI[C]. Proceedings of the IEEE Symposium on Computer-Based Medical Systems, August 3-4, 2009, Albuquerque, New Mexico, USA. DOI: 10.1109/CBMS.2009.5255249.
20
Artzi M, Bressler I, Ben BD. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis[J]. J Magn Reson Imaging, 2019, 50(2): 519-528. DOI: 10.1002/jmri.26643.
21
Zacharaki EI, Wang S, Chawla S, et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme[J]. Magn Reson Med, 2009, 62(6): 1609-1618. DOI: 10.1002/mrm.22147.
22
Alcaide-Leon P, Dufort P, Geraldo AF, et al. Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1145-1150. DOI: 10.3174/ajnr.A5173.
23
Kunimatsu A, Kunimatsu N, Yasaka K, et al. Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblastoma and primary central nervous system lymphoma[J]. Magn Reson Med Sci, 2019, 18(1): 44-52. DOI: 10.2463/mrms.mp.2017-0178.
24
Kunimatsu A, Kunimatsu N, Kamiya K, et al. Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis[J]. Magn Reson Med Sci, 2018, 17(1): 50-57. DOI: 10.2463/mrms.mp.2017-0044.
25
Li M, Wang H, Shang Z, et al. Ependymoma and pilocytic astrocytoma: Differentiation using radiomics approach based on machine learning[J]. J Clin Neurosci, 2020, 78: 175-180. DOI: 10.1016/j.jocn.2020.04.080.
26
Payabvash S, Aboian M, Tihan T, et al. Machine learning decision tree models for differentiation of posterior fossa tumors using diffusion histogram analysis and structural MRI findings[J]. Front Oncol, 2020, 10: 71. DOI: 10.3389/fonc.2020.00071.
27
Peng L, Parekh V, Huang P, et al. Distinguishing true progression from radionecrosis after stereotactic radiation therapy for brain metastases with machine learning and radiomics[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1236-1243. DOI: 10.1016/j.ijrobp.2018.05.041.
28
Gao XY, Wang YD, Wu SM, et al. Differentiation of treatment-related effects from glioma recurrence using machine learning classifiers based upon pre-and post-contrast T1WI and T2 FLAIR subtraction features: A two-center study[J]. Cancer Manag Res, 2020, 12: 3191-3201. DOI: 10.2147/CMAR.S244262.
29
Wang K, Qiao Z, Zhao X, et al. Individualized discrimination of tumor recurrence from radiation necrosis in glioma patients using an integrated radiomics-based model[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1400-1411. DOI: 10.1007/s00259-019-04604-0.
30
Bacchi S, Zerner T, Dongas J, et al. Deep learning in the detection of high-grade glioma recurrence using multiple MRI sequences: A pilot study[J]. J Clin Neurosci, 2019, 70: 11-13. DOI: 10.1016/j.jocn.2019.10.003.
31
Tang F, Liang S, Zhong T, et al. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs[J]. Eur Radiol, 2020, 30(2): 823-832. DOI: 10.1007/s00330-019-06441-z.
32
Kocher M, Ruge MI, Galldiks N, et al. Applications of radiomics and machine learning for radiotherapy of malignant brain tumors[J]. Strahlenther Onkol, 2020, 196: 856-867. DOI: 10.1007/s00066-020-01626-8.
33
Kocak B, Durmaz ES, Ates E, et al. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status[J]. Eur Radiol, 2020, 30(2): 877-886. DOI: 10.1007/s00330-019-06492-2.

PREV Relationship between aquaporin-4 and ischemic stroke and imaging research progress
NEXT Research status and progress of multimodal imaging technique in cerebral alveolar echinococcosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn