Share:
Share this content in WeChat
X
Review
Clinical application and current research status of cardiac magnetic resonance imaging of myocardial infarction
LIU Xi  YANG Zhigang  LI Yuan 

Cite this article as: Liu X, Yang ZG, Li Y. Clinical application and current research status of cardiac magnetic resonance imaging of myocardial infarction[J]. Chin J Magn Reson Imaging, 2021, 12(8): 98-100, 107. DOI:10.12015/issn.1674-8034.2021.08.022.


[Abstract] Myocardial infarction is the most serious type of ischemic cardiomyopathy with typical symptoms, so it is not difficult to diagnose this disease. Accurate assessment of the extent of infarcted myocardium in patients and distinguishing between reversible and irreversible myocardial injury are essential for clinical risk stratification and treatment decision making. In recent years, with the rapid development of cardiac magnetic resonance (CMR) technology, its application in heart diseases, especially ischemic heart disease, has attracted more and more attention. The development and application of some new magnetic resonance imaging methods have improved the safety and accuracy of evaluating myocardial injury, and provided valuable information for clinical diagnosis and treatment. This article reviews the clinical application of CMR imaging technology in myocardial infarction.
[Keywords] myocardial infarction;cardiac magnetic resonance;ischemic heart disease;risk stratification

LIU Xi1   YANG Zhigang2   LI Yuan2*  

1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital and Institute, Beijing 100142, China

2 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China

Li Y, E-mail: dr.liyuan@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This work was part of Subject Excellence Development 1·3·5 Project of West China Hospital of Sichuan University (No. ZYGD180131).
Received  2021-04-12
Accepted  2021-05-13
DOI: 10.12015/issn.1674-8034.2021.08.022
Cite this article as: Liu X, Yang ZG, Li Y. Clinical application and current research status of cardiac magnetic resonance imaging of myocardial infarction[J]. Chin J Magn Reson Imaging, 2021, 12(8): 98-100, 107. DOI:10.12015/issn.1674-8034.2021.08.022.

1
Dastidar AG, Harries I, Pontecorboli G, et al. Native T1 mapping to detect extent of acute and chronic myocardial infarction: comparison with late gadolinium enhancement technique[J]. Int J Cardiovasc Imaging, 2019, 35(3): 517-527. DOI: 10.1007/s10554-018-1467-1.
2
Reindl M, Holzknecht M, Tiller C, et al. Impact of infarct location and size on clinical outcome after ST-elevation myocardial infarction treated by primary percutaneous coronary intervention[J]. Int J Cardiol, 2020, 301: 14-20. DOI: 10.1016/j.ijcard.2019.11.123.
3
Izquierdo M, Ruiz-Granell R, Bonanad C, et al. Value of early cardiovascular magnetic resonance for the prediction of adverse arrhythmic cardiac events after a first noncomplicated ST-segment-elevation myocardial infarction[J]. Circ Cardiovasc Imaging, 2013, 6(5): 755-761. DOI: 10.1161/CIRCIMAGING.113.000702.
4
Lintingre PF, Nivet H, Clément-Guinaudeau S, et al. High-resolution late gadolinium enhancement magnetic resonance for the diagnosis of myocardial infarction with nonobstructed coronary arteries[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1135-1148. DOI: 10.1016/j.jcmg.2019.11.020.
5
Kloner RA, King KS, Harrington MG. No-reflow phenomenon in the heart and brain[J]. Am J Physiol Heart Circ Physiol, 2018, 315(3): H550-H562. DOI: 10.1152/ajpheart.00183.2018.
6
van Cauteren YJM, Smulders MW, RALJ Theunissen, et al. Cardiovascular magnetic resonance accurately detects obstructive coronary artery disease in suspected non-ST elevation myocardial infarction: a sub-analysis of the CARMENTA trial[J]. J Cardiovasc Magn Reson, 2021, 23(1): 40. DOI: 10.1186/s12968-021-00723-6.
7
Bethke A, Shanmuganathan L, Andersen GØ, et al. Microvascular perfusion in infarcted and remote myocardium after successful primary PCI: angiographic and CMR findings[J]. Eur Radiol, 2019, 29(2): 941-950. DOI: 10.1007/s00330-018-5588-7
8
Ferreira VM, Wijesurendra RS, Liu A, et al. Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias[J]. J Cardiovasc Magn Reson, 2015, 17(1): 77. DOI: 10.1186/s12968-015-0182-5.
9
Radenkovic D, Weingärtner S, Ricketts L, et al. T1 mapping in cardiac MRI[J]. Heart Fail Rev, 2017, 22(4): 415-430. DOI: 10.1007/s10741-017-9627-2.
10
Robinson AA, Chow K, Salerno M. Myocardial T1 and ECV measurement: underlying concepts and technical considerations[J]. JACC Cardiovasc Imaging, 2019, 12(11Pt 2):2332-2344. DOI: 10.1016/j.jcmg.2019.06.031.
11
Bulluck H, Hammond-Haley M, Fontana M, et al. Quantification of both the area-at-risk and acute myocardial infarct size in ST-segment elevation myocardial infarction using T1-mapping[J]. J Cardiovasc Magn Reson, 2017, 19(1): 57. DOI: 10.1186/s12968-017-0370-6.
12
Liu X, Hou JL, Yang ZG, et al. Native T1 mapping for characterization of acute and chronic myocardial infarction in swine: Comparison with contrast-enhanced MRI[J]. J Magn Reson Imaging, 2018, 47(5): 1406-1414. DOI: 10.1002/jmri.25871.
13
Reinstadler SJ, Stiermaier T, Liebetrau J, et al. Prognostic significance of remote myocardium alterations assessed by quantitative noncontrastT1 mapping in ST-segment elevation myocardial infarction[J]. JACC Cardiovasc Imaging, 2018, 11(3): 411-419. DOI: 10.1016/j.jcmg.2017.03.015.
14
Garg P, Broadbent DA, Swoboda PP, et al. Extra-cellular expansion in the normal, non-infarcted myocardium is associated with worsening of regional myocardial function after acute myocardial infarction[J]. J Cardiovasc Magn Reson, 2017, 19(1): 73. DOI: 10.1186/s12968-017-0384-0.
15
Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: Expert recommendations[J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072.
16
Demirkiran A, Everaars H, Amier RP, et al. Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(7): 723-734. DOI: 10.1093/ehjci/jez094.
17
Tilak GS, Hsu LY, Hoyt RF, et al. In vivo T2-weighted magnetic resonance imaging can accurately determine the ischemic area at risk for 2-day-old nonreperfused myocardial infarction[J]. Invest Radiol, 2008, 43(1): 7-15. DOI: 10.1097/RLI.0b013e3181558822.
18
Carberry J, Carrick D, Haig C, et al. Persistence of infarct zone T2 hyperintensity at 6 months after acute ST-segment-elevation myocardial infarction: Incidence, pathophysiology, and prognostic implications[J]. Circ Cardiovasc Imaging, 2017, 10(12): e006586. DOI: 10.1161/CIRCIMAGING.117.006586.
19
Fernández-Jiménez R, Barreiro-Pérez M, Martin-García A, et al. Dynamic edematous response of the human heart to myocardial infarction: Implications for assessing myocardial area at risk and salvage[J]. Circulation, 2017, 136(14): 1288-1300. DOI: 10.1161/CIRCULATIONAHA.116.025582.
20
Masci PG, Pavon AG, Muller O, et al. Relationship between CMR-derived parameters of ischemia/reperfusion injury and the timing of CMR after reperfused ST-segment elevation myocardial infarction[J]. J Cardiovasc Magn Reson, 2018, 20(1): 50. DOI: 10.1186/s12968-018-0474-7.
21
Kim PK, Hong YJ, Im DJ, et al. Myocardial T1 and T2 mapping: Techniques and clinical applications[J]. Korean J Radiol, 2017, 18(1): 113-131. DOI: 10.3348/kjr.2017.18.1.113.
22
Voigt JU, Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease[J]. JACC Cardiovasc Imaging, 2019, 12(9): 1849-1863. DOI: 10.1016/j.jcmg.2019.01.044.
23
Domenech-Ximenos B, Sanz-de la Garza M, Sepulveda-Martinez Á, et al. Assessment of myocardial deformation with CMR: a comparison with ultrasound speckle tracking[J]. Eur Radiol, 2021 Mar 31. DOI: 10.1007/s00330-021-07857-2.
24
Montgomery DE, Puthumana JJ, Fox JM, et al. Global longitudinal strain aids the detection of non-obstructive coronary artery disease in the resting echocardiogram[J]. Eur Heart J Cardiovasc Imaging, 2012, 13(7): 579-587. DOI: 10.1093/ejechocard/jer282.
25
Gavara J, Rodriguez-Palomares JF, Valente F, et al. Prognostic value of strain by tissue tracking cardiac magnetic resonance after ST-segment elevation myocardial infarction[J]. JACC Cardiovasc Imaging, 2018, 11(10): 1448-1457. DOI: 10.1016/j.jcmg.2017.09.017.
26
Claus P, Omar AM, Pedrizzetti G, et al. Tissue tracking technology for assessing cardiac mechanics: Principles, normal values, and clinical applications[J]. JACC Cardiovasc Imaging, 2015, 8(12): 1444-1460. DOI: 10.1016/j.jcmg.2015.11.001.
27
Elias J, van Dongen IM, Hoebers LP, et al. Recovery and prognostic value of myocardial strain in ST-segment elevation myocardial infarction patients with a concurrent chronic total occlusion[J]. Eur Radiol, 2020, 30(1): 600-608. DOI: 10.1007/s00330-019-06338-x.

PREV The latest development of technology of magnetic resonance imaging in infants with brachial plexus birth injury
NEXT Advance in multicenter research of hepatocellular carcinoma based on radiomics
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn