Share:
Share this content in WeChat
X
Review
Research progress of renal blood oxygen level dependent magnetic resonance imaging
CUI Kunhua  TAO Yuhong 

Cite this article as: Cui KH, Tao YH. Research progress of renal blood oxygen level dependent magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2021, 12(8): 111-113. DOI:10.12015/issn.1674-8034.2021.08.026.


[Abstract] Kidney blood oxygen level dependent magnetic resonance imaging (BOLD-MRI) can evaluate renal oxygen metabolism non-invasive. The clinical research of kidney BOLD-MRI is increasing, mainly including the changes of oxygenation level in chronic kidney disease, acute kidney injury, glomerular disease, kidney transplantation, renal vascular disease and renal tumor. Here, the research progress of kidney BOLD-MRI was reviewed.
[Keywords] kidney;blood oxygen level dependence;magnetic resonance imaging

CUI Kunhua   TAO Yuhong*  

Division of Nephrology, Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu 610041, China

Tao YH, E-mail: hxtyh@sina.com

Conflicts of interest   None.

Received  2021-02-03
Accepted  2021-03-05
DOI: 10.12015/issn.1674-8034.2021.08.026
Cite this article as: Cui KH, Tao YH. Research progress of renal blood oxygen level dependent magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2021, 12(8): 111-113. DOI:10.12015/issn.1674-8034.2021.08.026.

1
Chen Q, Zhou J, Zhang H, et al. One-step analysis of brain perfusion and function for acute stroke patients after reperfusion: A resting-state fMRI study[J]. J Magn Reson Imaging, 2018, 50(1): 221-229. DOI: 10.1002/jmri.26571.
2
Agarwal S, Sair HI, Gujar SK, et al. fMRI activation optimization in the setting of brain tumor-induced neurovascular uncoupling using resting state BOLD ALFF[J]. Brain Connect, 2019, 9(3): 241-250. DOI: 10.1089/brain.2017.0562.
3
Pruijm M, Milani B, Burnier M. Blood oxygenation level-dependent MRI to assess renal oxygenation in renal diseases: Progresses and challenges[J]. Front Physiol, 2016, 5(7): 667. DOI: 10.3389/fphys.2016.00667.
4
Sugiyama K, Inoue T, Kozawa E, et al. Reduced oxygenation but not fibrosis defined by functional magnetic resonance imaging predicts the long-term progression of chronic kidney disease[J]. Nephrol Dial Transplant, 2020, 35(6): 964-970. DOI: 10.1093/ndt/gfy324.
5
Pruijm M, Mendichovszky IA, Liss P, et al. Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review[J]. Nephrol Dial Transplant, 2018, 33(2): 22-28. DOI: 10.1093/ndt/gfy243.
6
Chen F, Li S, Sun D. Methods of blood oxygen level-dependent magnetic resonance imaging analysis for evaluating renal oxygenation[J]. Kidney Blood Press Res, 2018, 43(2): 378-388. DOI: 10.1159/000488072.
7
Fine LG, Dharmakumar R. Limitations of BOLD-MRI for assessment of hypoxia in chronically diseased human kidneys[J]. Kidney Int, 2012, 82(8): 934-935. DOI: 10.1038/ki.2012.283.
8
James P, Simon P, John C. Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI[J]. Br J Radiol, 2019, 92(1095): 20180642. DOI: 10.1259/bjr.20180642.
9
Syed NN, Ibrahim B, Sharifat H, et al. Incremental benefits of EEG informed fMRI in the study of disorders related to meso-corticolimbic dopamine pathway dysfunction: A systematic review of recent literature[J]. J Clin Neurosci, 2019, 6(5): 87-99. DOI: 10.1016/j.jocn.2019.03.054.
10
Jiang K, Ferguson CM, Lerman LO. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques[J]. Transl Res, 2019, 20(9): 105-120. DOI: 10.1016/j.trsl.2019.02.009.
11
Willemze RA, Bakker T, Pippias M, et al. β-Blocker use is associated with a higher relapse risk of inflammatory bowel disease: a Dutch retrospective case-control study[J]. Eur J Gastroenterol Hepatol, 2018, 30(2): 161-166. DOI: 10.1097/MEG.0000000000001016.
12
Li C, Liu H, Li X, et al. Application of BOLD-MRI in the classification of renal function in chronic kidney disease[J]. Abdom Radiol (NY), 2019, 44(2): 604-611. DOI: 10.1007/s00261-018-1750-6.
13
Zhou H, Yang M, Jiang Z, et al. Renal hypoxia: An important prognostic marker in patients with chronic kidney disease[J]. Am J Nephrol, 2018, 48(1): 46-55. DOI: 10.1159/000491551.
14
Pruijm M, Milani B, Pivin E, et al. Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease[J]. Kidney Int, 2018, 93(4): 932-940. DOI: 10.1016/j.kint.2017.10.020.
15
Milani B, Ansaloni A, Sousa-Guimaraes S, et al. Reduction of cortical oxygenation in chronic kidney disease: evidence obtained with a new analysis method of blood oxygenation level-dependent magnetic resonance imaging[J]. Nephrol Dial Transplant, 2017, 32(12): 2097-2105. DOI: 10.1093/ndt/gfw362.
16
Chehade H, Milani B, Ansaloni A, et al. Renal tissue oxygenation in children with chronic kidney disease due to vesicoureteral reflux[J]. Pediatr Nephrol, 2016, 31(11): 2103-2111. DOI: 10.1007/s00467-016-3419-0.
17
Prasad PV, Thacker J, Li LP, et al. Multi-parametric evaluation of chronic kidney disease by MRI: A preliminary cross-sectional study[J]. PLoS One, 2015, 10(10): 0139661. DOI: 10.1371/journal.pone.0139661.
18
Khatir DS, Pedersen M, Jespersen B, et al. Evaluation of renal blood flow and oxygenation in CKD using magnetic resonance imaging[J]. Am J Kidney Dis, 2015, 66(3): 402-411. DOI: 10.1053/j.ajkd.2014.11.022.
19
Piskunowicz M, Hofmann L, Zuercher E, et al. A new technique with high reproducibility to estimate renal oxygenation using BOLD-MRI in chronic kidney disease[J]. Magn Reson Imaging, 2015, 33(3): 253-261. DOI: 10.1016/j.mri.2014.12.002.
20
Pruijm M, Hofmann L, Piskunowicz M, et al. Determinants of renal tissue oxygenation as measured with BOLD-MRI in chronic kidney disease and hypertension in humans[J]. PLoS One, 2014, 9(4): 95895. DOI: 10.1371/journal.pone.0095895.
21
Xin-Long P, Jing-Xia X, Jian-Yu L, et al. A preliminary study of blood-oxygen-level-dependent MRI in patients with chronic kidney disease[J]. Magn Reson Imaging, 2012, 30(3): 330-335. DOI: 10.1016/j.mri.2011.10.003.
22
Wang ZJ, Kumar R, Banerjee S, et al. Blood oxygen level-dependent (BOLD) MRI of diabetic nephropathy: preliminary experience[J]. J Magn Reson Imaging, 2011, 33(3): 655-660. DOI: 10.1002/jmri.22501.
23
Luo F, Liao Y, Cui K, et al. Noninvasive evaluation of renal oxygenation in children with chronic kidney disease using blood-oxygen-level-dependent magnetic resonance imaging[J]. Pediatr Radiol, 2020, 50(6): 848-854. DOI: 10.1007/s00247-020-04630-3.
24
Prasad PV, Li LP, Thacker JM, et al. Cortical perfusion and tubular function as evaluated by magnetic resonance imaging correlates with annual loss in renal function in moderate chronic kidney disease[J]. Am J Nephrol, 2019, 49(2): 114-124. DOI: 10.1159/000496161.
25
Michaely HJ, Metzger L, Haneder S, et al. Renal BOLD-MRI does not reflect renal function in chronic kidney disease[J]. Kidney Int, 2012, 81(7): 684-689. DOI: 10.1038/ki.2011.455.
26
Bane O, Hectors SJ, Gordic S, et al. Multiparametric magnetic resonance imaging shows promising results to assess renal transplant dysfunction with fibrosis[J]. Kidney Int, 2020, 97(2): 414-420. DOI: 10.1016/j.kint.2019.09.030.
27
Pohlmann A, Arakelyan K, Hentschel J, et al. Detailing the relation between renal T2* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements[J]. Invest Radiol, 2014, 49(8): 547-560. DOI: 10.1097/RLI.0000000000000054.
28
Zhang B, Wang Y, Wang C, et al. Comparison of blood oxygen level-dependent imaging and diffusion-weighted imaging in early diagnosis of acute kidney injury in animal models[J]. J Magn Reson Imaging, 2019, 50(3): 719-724. DOI: 10.1002/jmri.26617.
29
Li LP, Franklin T, Du H, et al. Intrarenal oxygenation by blood oxygenation level-dependent MRI in contrast nephropathy model: effect of the viscosity and dose[J]. J Magn Reson Imaging, 2012, 36(5): 1162-1167. DOI: 10.1002/jmri.23747.
30
Wang ZQ, Liu HX, Meng H, et al. Application of diffusion tensor imaging and blood oxygenation level-dependent magnetic resonance imaging to assess bilateral renal function induced by Iohexol in rabbits[J]. BMC Nephrol, 2020, 21(1): 210. DOI: 10.1186/s12882-020-01857-y.
31
Shah R, Sree RK, Walls A, et al. Gadolinium-free cardiovascular magnetic resonance stress T1 mapping in patients with chronic kidney disease[J]. JACC Cardiovasc Imaging, 2019, 12(10): 2083-2085. DOI: 10.1016/j.jcmg.2019.04.016.
32
Tran M, Tam D, Bardia A, et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice[J]. J Clin Invest, 2011, 121(10): 4003-4014. DOI: 10.1172/JCI58662.
33
Zhang R, Wang Y, Chen F, et al. Noninvasive evaluation of renal oxygenation in primary nephrotic syndrome with blood oxygen level dependent magnetic resonance imaging: Initial experience[J]. J Int Med Res, 2015, 43(3): 356-363. DOI: 10.1177/0300060515579117.
34
Yin WJ, Liu F, Li XM, et al. Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI[J]. Eur J Radiol, 2012, 81(7): 1426-1431. DOI: 10.1016/j.ejrad.2011.03.045.
35
Zheng ZF, Wang YY, Yan TK, et al. Detection of renal hypoxia configuration in patients with lupus nephritis: a primary study using blood oxygen level-dependent MR imaging[J]. Abdom Radiol (NY), 2020, 20(10): 1-13. DOI: 10.1007/s00261-020-02794-y.
36
Shi H, Yan T, Li D, et al. Detection of renal hypoxia in lupus nephritis using blood oxygen level-dependent MR imaging: A multiple correspondence analysis[J]. Kidney Blood Press Res, 2017, 42(1): 123-135. DOI: 10.1159/000472720.
37
Shehata M, Shalaby A, Switala AE, et al. A multimodal computer-aided diagnostic system for precise identification of renal allograft rejection: Preliminary results[J]. Med Phys, 2020, 47(6): 2427-2440. DOI: 10.1002/mp.14109.
38
Wang W, Yu Y, Wen J, et al. Combination of functional magnetic resonance imaging and histopathologic analysis to evaluate interstitial fibrosis in kidney allografts[J]. Clin J Am Soc Nephrol, 2019, 14(9): 1372-1380. DOI: 10.2215/CJN.00020119.
39
Papalia R, Panebianco V, Mastroianni R, et al. Accuracy of magnetic resonance imaging to identify pseudocapsule invasion in renal tumors[J]. World J Urol, 2020, 38(2): 407-415. DOI: 10.1007/s00345-019-02755-1.
40
MacAskill CJ, Erokwu BO, Markley M, et al. Multi-parametric MRI of kidney disease progression for autosomal recessive polycystic kidney disease: mouse model and initial patient results[J]. Pediatr Res, 2020, 13(4): 11-19. DOI: 10.1038/s41390-020-0883-9.
41
Buchanan CE, Mahmoud H, Cox EF, et al. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging[J]. Nephrol Dial Transplant, 2020, 35(6): 955-964. DOI: 10.1093/ndt/gfz129.
42
Shehata M, Shalaby A, Switala AE, et al. A multimodal computer-aided diagnostic system for precise identification of renal allograft rejection: Preliminary results[J]. Med Phys, 2020, 4(4): 14109.
43
Bane O, Hectors SJ, Gordic S, et al. Multiparametric magnetic resonance imaging shows promising results to assess renal transplant dysfunction with fibrosis[J]. Kidney Int, 2020, 97(2): 414-420. DOI: 10.1016/j.kint.2019.09.030.

PREV Clinical research progress of radiomics in pancreatic cancer
NEXT Research progress in evaluation of abnormal defecation control function by MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn