Share:
Share this content in WeChat
X
Review
Applications and research progress of motion-sensitized driven-equilibrium
MENG Zhuoni  ZHU Xiqi 

Cite this article as: Meng ZN, Zhu XQ. Applications and research progress of motion-sensitized driven-equilibrium[J]. Chin J Magn Reson Imaging, 2021, 12(8): 121-124. DOI:10.12015/issn.1674-8034.2021.08.029.


[Abstract] Motion-sensitized driven-equili-brium (MSDE) is a magnetic resonance black blood imaging technology. By applying the diffusion gradient field, it can suppress the signal of blood flow and the signal of water molecules in diffusion motion, thus make them appear as low signal. It has certain advantages in the suppression of slow flow and turbulence. Previous studies have confirmed that it can evaluate carotid atherosclerotic plaque in detail, noninvasively and effectively. In recent years, its applications and researches in nerve, cerebrospinal fluid, brain metastases and other fields have been expanded. MSDE becomes a novel, comprehensive and safe imaging technology. This paper reviews the imaging principle, applications, defects and prospect of MSDE.
[Keywords] motion-sensitized driven-equilibrium;black blood imaging;vessel wall imaging;magnetic resonance neurography;carotid plaque

MENG Zhuoni1   ZHU Xiqi2*  

1 Graduate School of Guilin Medical College, Guilin 541000, China

2 Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541000, China

Zhu XQ, E-mail: xiqi.zhu@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This work was part of Guilin Technology Application and Promotion Plan Found (No. 2020011206-7).
Received  2021-02-27
Accepted  2021-05-13
DOI: 10.12015/issn.1674-8034.2021.08.029
Cite this article as: Meng ZN, Zhu XQ. Applications and research progress of motion-sensitized driven-equilibrium[J]. Chin J Magn Reson Imaging, 2021, 12(8): 121-124. DOI:10.12015/issn.1674-8034.2021.08.029.

1
Zhao HL, Cao Y, Liu XS, et al. Application Experience of Improved Motion Sensitized Driven Equilibrium (iMSDE) Black Blood Magnetic Resonance Imaging in the Diagnosis of Carotid Stenosis[J]. J Clin Radiol, 2012, 31(10): 1393-1396.
2
Lee YK, Kwak HS, Chung GH, et al. Lipid-rich necrotic core of basilar artery atherosclerotic plaque: Contrast-enhanced black blood imaging on vessel wall imaging[J]. Diagnostics, 2019, 9(3): 69. DOI: 10.3390/diagnostics9030069.
3
Yuan J, Patterson AJ, Ruetten PPR, et al. A comparison of black-blood T2 mapping sequences for carotid vessel wall imaging at 3T: An assessment of accuracy and repeatability[J]. Magn Reson Med Sci, 2019, 18(1): 29-35. DOI: 10.2463/mrms.mp.2017-0141.
4
Zhu C, Graves MJ, Yuan J, et al. Optimization of improved motion-sensitized driven-equilibrium (iMSDE) blood suppression for carotid artery wall imaging[J]. J Cardiovasc Magn Reson, 2014, 16(1): 61. DOI: 10.1186/s12968-014-0061-5.
5
Zhang J, Ding S, Zhao H, et al. Evaluation of chronic carotid artery occlusion by non-contrast 3D-MERGE MR vessel wall imaging: comparison with 3D-TOF-MRA, contrast-enhanced MRA, and DSA[J]. Eur Radiol, 2020, 30(11): 5805-5814. DOI: 10.1007/s00330-020-06989-1.
6
Chen X, Zhao H, Chen Z, et al. Association between proximal internal carotid artery steno-occlusive disease and diffuse wall thickening in its petrous segment: a magnetic resonance vessel wall imaging study[J]. Neuroradiology, 2017, 59(5): 485-490. DOI: 10.1007/s00234-017-1825-z.
7
Murata K, Murata N, Chu B, et al. Characterization of carotid atherosclerotic plaques using 3-Dimensional MERGE magnetic resonance imaging and correlation with stroke risk factors[J]. Stroke, 2020, 51(2): 475-480.
8
Li J, Li D, Yang D, et al. Irregularity of carotid plaque surface predicts subsequent vascular event: A MRI study[J]. J Magn Reson Imaging, 2020, 52(1): 185-194. DOI: 10.1002/jmri.27038.
9
Kanoto M, Hosoya T, Oda A, et al. Focal deformity of the cranial nerves observed on multislice motion-sensitized driven equilibrium (MSDE) in patients with neurovascular compression[J]. J Comput Assist Tomogr, 2012, 36(1): 121-124. DOI: 10.1097/RCT.0b013e3182416f3b.
10
Kanoto M, Toyoguchi Y, Hosoya T, et al. Visualization of the trochlear nerve in the cistern with use of high-resolution turbo spin-echo multisection motion-sensitized driven equilibrium[J]. Am J Neuroradiol, 2013, 34(7): 1434-1437. DOI: 10.3174/ajnr.A3403.
11
Jiang YW, Sun C. Advances in imaging studies of intraparotid facial nerve[J]. J Med Imaging, 2018, 28(10): 1749-1752.
12
Jiang YW, Sun C, Sun J, et al. The value of 3D-iMSDE MR neurography in the determination of the anatomical relationship between intraparotid facial nerve and parotid ducts and parotid tumors[J]. Chin J Radiol, 2019, 53(9): 755-760. DOI: 10.3760/cma.j.issn.1005-1201.2019.09.008.
13
Klupp E, Cervantes B, Sollmann N, et al. Improved brachial plexus visualization using an adiabatic iMSDE-prepared STIR 3D TSE[J]. Clin Neuroradiol, 2019, 29(4): 631-638. DOI: 10.1007/s00062-018-0706-0.
14
Sun CN, Li CT, Zheng XZ, et al. The study of iMSDE MR neurography in lumbosacral plexus and its lesions[J]. J Med Imaging, 2016, 26(2): 314-318.
15
Kasper JM, Wadhwa V, Scott KM, et al. SHINKEI--a novel 3D isotropic MR neurography technique: technical advantages over 3DIRTSE-based imaging[J]. Eur Radiol, 2015, 25(6): 1672-1677. DOI: 10.1007/s00330-014-3552-8.
16
De Paepe KN, Higgins DM, Ball I, et al. Visualizing the autonomic and somatic innervation of the female pelvis with 3D MR neurography: a feasibility study[J]. Acta Radiol, 2020, 61(12): 1668-1676. DOI: 10.1177/0284185120909337.
17
Cervantes B, Kirschke JS, Klupp E, et al. Orthogonally combined motion- and diffusion-sensitized driven equilibrium (OC-MDSDE) preparation for vessel signal suppression in 3D turbo spin echo imaging of peripheral nerves in the extremities[J]. Magn Reson Med, 2018, 79(1): 407-415. DOI: 10.1002/mrm.26660.
18
Cornelissen BMW, Leemans EL, Coolen BF, et al. Insufficient slow-flow suppression mimicking aneurysm wall enhancement in magnetic resonance vessel wall imaging: a phantom study[J]. Neurosurgical Focus, 2019, 47(1): E19. DOI: 10.3171/2019.4.FOCUS19235.
19
Nagahata S, Nagahata M, Obara M, et al. Wall enhancement of the intracranial aneurysms revealed by magnetic resonance vessel wall imaging using three-dimensional turbo spin-echo sequence with motion-sensitized driven-equilibrium: A sign of ruptured aneurysm?[J]. Clin Neuroradiol, 2016, 26(3): 277-283. DOI: 10.1007/s00062-014-0353-z.
20
Takano K, Hida K, Kuwabara Y, et al. Intracranial arterial wall enhancement using gadolinium-enhanced 3D black-blood T1-weighted imaging[J]. Eur J Radiol, 2017, 86: 13-19. DOI: 10.1016/j.ejrad.2016.10.032.
21
Cornelissen B, Leemans EL, Slump CH, et al. Vessel wall enhancement of intracranial aneurysms: fact or artifact?[J]. Neurosurg Focus, 2019, 47(1): E18. DOI: 10.3171/2019.4.FOCUS19236.
22
Kim JW, Shin N, Kim YD, et al. Added value of 3D proton-density weighted images in diagnosis of intracranial arterial dissection[J]. PLoS One, 2016, 11(11): e166929. DOI: 10.1371/journal.pone.0166929.
23
Choi JW, Han M, Hong JM, et al. Feasibility of improved motion-sensitized driven-equilibrium (iMSDE) prepared 3D T1-weighted imaging in the diagnosis of vertebrobasilar artery dissection[J]. J Neuroradiol, 2018, 45(3): 186-191. DOI: 10.1016/j.neurad.2017.11.006.
24
Wang HW, Wu C, Xue Z, et al. A supplemental technique for preoperative evaluation of giant intracranial aneurysm[J]. J Neurol Surg A Cent Eur Neurosurg, 2021.Feb 14. DOI: 10.1055/s-0040-1721006
25
Lehman VT, Brinjikji W, Mossa-Basha M, et al. Conventional and high-resolution vessel wall MRI of intracranial aneurysms: current concepts and new horizons[J]. J Neurosurgery, 2018, 128(4): 969-981. DOI: 10.3171/2016.12.JNS162262.
26
Horie T, Kajihara N, Saito H, et al. Visualization of cerebrospinal fluid motion in the whole brain using three-dimensional dynamic improved motion-sensitized driven-equilibrium steady-state free precession[J]. Magn Reson Med Sci, 2020, 20(1): 112-118. DOI: 10.2463/mrms.tn.2019-0171.
27
Atsumi H, Horie T, Kajihara N, et al. Simple identification of cerebrospinal fluid turbulent motion using a dynamic improved motion-sensitized driven-equilibrium steady-state free precession method applied to various types of cerebrospinal fluid motion disturbance[J]. Neurol Med Chir (Tokyo), 2020, 60(1): 30-36. DOI: 10.2176/nmc.oa.2019-0170.
28
Katoh H, Shibukawa S, Yamaguchi K, et al. A combination of magnetic resonance imaging techniques to localize the dural defect in a case of superficial siderosis-A case report[J]. Medicines, 2020, 7(6): 36. DOI: 10.3390/medicines7060036.
29
Lee S, Park DW, Lee JY, et al. Improved motion-sensitized driven-equilibrium preparation for 3D turbo spin echo T1 weighted imaging after gadolinium administration for the detection of brain metastases on 3T MRI[J]. Br J Radiol, 2016, 89(1063): 20150176. DOI: 10.1259/bjr.20150176.
30
Bae YJ, Choi BS, Lee KM, et al. Efficacy of maximum intensity projection of contrast-enhanced 3D turbo-spin echo imaging with improved motion-sensitized driven-equilibrium preparation in the detection of brain metastases[J]. Korean J Radiol, 2017, 18(4): 699. DOI: 10.3348/kjr.2017.18.4.699.
31
Yang SQ, Wang S, Jiang GH, et al. Initial experience of using improved motion sensitized driven equilibrium prepared balanced steady-state free precession[J]. J Pract Med, 2017, 33(12): 2029-2032. DOI: 10.3969/j.issn.1006-5725.2017.12.036.
32
Han Y, Guan M, Zhu Z, et al. Assessment of longitudinal distribution of subclinical atherosclerosis in femoral arteries by three-dimensional cardiovascular magnetic resonance vessel wall imaging[J]. J Cardiovasc Magn Reson, 2018, 20(1): 60. DOI: 10.1186/s12968-018-0482-7.
33
Mori K, Saida T, Sato F, et al. Endoleak detection after endovascular aneurysm repair using unenhanced MRI with flow suppression technique: Feasibility study in comparison with contrast-enhanced CT[J]. Eur Radiol, 2017, 27(1): 336-344. DOI: 10.1007/s00330-016-4315-5.
34
Nakayama T, Nishie A, Yoshiura T, et al. Balanced MR cholangiopancreatography with motion-sensitized driven-equilibrium (MSDE) preparation: Feasibility and optimization of imaging parameters[J]. Magn Reson Imaging, 2015, 33(10): 1219-1223. DOI: 10.1016/j.mri.2015.07.003.
35
Nakayama T, Yoshiura T, Nishie A, et al. Balanced MR cholangiopancreatography with motion-sensitised driven-equilibrium (MSDE) preparation: feasibility of Gd-EOB-DTPA-enhanced biliary examination[J]. Clin Radiol, 2016, 71(12): 1284-1288. DOI: 10.1016/j.crad.2016.03.019.
36
Dai E, Dong L, Zhang Z, et al. Technical note: Measurement of common carotid artery lumen dynamics using black-blood MR cine imaging[J]. Med Physics, 2017, 44(3): 1105-1112. DOI: 10.1002/mp.12114.
37
Eiden S, Beck C, Venhoff N, et al. High-resolution contrast-enhanced vessel wall imaging in patients with suspected cerebral vasculitis: Prospective comparison of whole-brain 3D T1 SPACE versus 2D T1 black blood MRI at 3 Tesla[J]. PLoS One, 2019, 14(3): e213514. DOI: 10.1371/journal.pone.0213514.

PREV Research progress of deep learning in sports injuries of bone and joint based on MRI
NEXT Effect of vestibular rehabilitation on spontaneous brain activity in patients with vestibular migraine: a resting state MRI study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn