Share:
Share this content in WeChat
X
Review
Imaging research progress in mild cognitive impairment using convolutional neural networks
LI Xiaoling  WANG Jingxian  LI Ang  LI Meng  CAO Danna  WANG Feng  CUI Xuan  YAO Chunli  CAI Lina 

Cite this article as: Li XL, Wang JX, Li A, et al. Imaging research progress in mild cognitive impairment using convolutional neural networks[J]. Chin J Magn Reson Imaging, 2021, 12(9): 88-90, 94. DOI:10.12015/issn.1674-8034.2021.09.022.


[Abstract] The Human Connected Group Project is the highest-level research project in the field of brain imaging, and artificial intelligence (AI) is an indispensable tool in the process of brain science research. As one of the latest technologies in the field of AI, convolutional neural networks (CNN) have outstanding performance in computer vision, image processing, etc., and have shown great clinical application prospects in the diagnosis and analysis of mild cognitive impairment (MCI). The author uses CNN as a clue to discuss its current research status and future development direction in the field of MCI.
[Keywords] convolutional neural networks;mild cognitive impairment;brain;functional magnetic resonance imaging;structural magnetic resonance imaging

LI Xiaoling1   WANG Jingxian2   LI Ang3   LI Meng1   CAO Danna1   WANG Feng1*   CUI Xuan2   YAO Chunli2   CAI Lina2  

1 First Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin 150040, China

2 Graduate School of Heilongjiang University of Chinese Medicine, Harbin 150040, China

3 Public Health Institute of Harbin Medical University, Harbin 150081, China

Wang F, E-mail: wfzmy123@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82074537, 81973930, 81373714). Heilongjiang Province Natural Science Foundation Project (No. LH2020H103, H2016081). Harbin Science and Technology Innovation Outstanding Academic Leaders Fund (No. 2016RAXYJ096). Ministry of Education "Chunhui Plan" (No. Z2009-1-15030). Harbin Science and Technology Innovation Outstanding Academic Leaders Fund (No. 2017RAQXJ180). Project of Heilongjiang University of Traditional Chinese Medicine (No. ZHY12-Z046). Scientific Research Project of Heilongjiang Health Department (No. 2012-346).
Received  2021-05-28
Accepted  2021-06-28
DOI: 10.12015/issn.1674-8034.2021.09.022
Cite this article as: Li XL, Wang JX, Li A, et al. Imaging research progress in mild cognitive impairment using convolutional neural networks[J]. Chin J Magn Reson Imaging, 2021, 12(9): 88-90, 94. DOI:10.12015/issn.1674-8034.2021.09.022.

[1]
2020 Alzheimer's disease facts and figures. Alzheimers dement[J/OL]. 2020, 16(3): 391-460. DOI: 10.1002/alz.12068.
[2]
Wang F, Wei SQ, Li XL, et al. Study on fMRI of brain resting state in patients with mild cognitive impairment treated by acupuncture[J]. Chin J Magn Reson Imaging, 2020, 11(2): 94-98. DOI: 10.12015/issn.1674-8034.2020.02.004.
[3]
2021 Alzheimer's disease facts and figures. Alzheimers dement[J/OL]. 2021, 17(3): 327-406. DOI: 10.1002/alz.12328.
[4]
Zhang SY, Zhang L, Sun HZ. Application and development of PET/MRI in epilepsy[J]. Chin J Magn Reson Imaging, 2019, 10(2): 153-156. DOI: 10.12015/issn.1674-8034.2019.02.016.
[5]
Xiong JJ, Yu T. Progress of preoperative and intraoperative MR functional imaging in glioma[J]. Chin J Magn Reson Imaging, 2018, 9(5): 391-395. DOI: 10.12015/issn.1674-8034.2018.05.013.
[6]
Li YT, Wang LB, Sun HZ. Application of functional magnetic resonance imaging in mild cognitive impairment[J]. Chin J Magn Reson Imaging, 2019, 10(12): 933-936. DOI: 10.12015/issn.1674-8034.2019.12.013.
[7]
Shi X, Xie SM, Li HB. Detection of pulmonary nodules based on conventional neural networks[J]. Chin J Med Imaging Technol, 2018, 34(6): 934-939. DOI: 10.13929/j.1003-3289.201712025.
[8]
Liu ZH. The study of classification in gliomas by using deep-learning convolutional neural networks[J]. J Pract Radiol, 2020, 36(7):1015- 1018. DOI: 10.3969/j.issn.1002-1671.2020.07.001.
[9]
Gan Kf, Xu DL, Lin YM, et al. Artificial intelligence detection of distalradius fractures:A comparison between the convolutional network and professional assments[J]. Acta Orthop, 2019, 90(4): 394-400. DOI: 10.1080/17453674.2019.1600125.
[10]
Choy G, Khalilzadeh O, Michalski M, et al. Current applications and future impact of machine learning in radiology[J]. Insights Imaging, 2018, 288(2): 318-328. DOI: 10.1148/radiol.2018171820.
[11]
Yamashita R, Nishio M, Do RKG, et al. Convolutional neural networks: an overview and application in radiology[J]. Insights Imaging, 2018, 9(4): 611-629. DOI: 10.1007/s13244-018-0639-9.
[12]
Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. J Physiol, 1962, 160(1): 106-54. DOI: 10.1113/jphysiol.sp006837.
[13]
Fukushima K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biol Cybern, 1980, 36(4): 193-202. DOI: 10.1007/BF00344251.
[14]
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
[15]
Wang YD, Song Y, Xie HB, et al. Reconstruction of under-sampled magnetic resonance image based on convolutional neural network[J]. Chin J Magn Reson Imaging, 2018, 9(6): 453-459. DOI: 10.12015/issn.1674-8034.2018.06.010.
[16]
Guo MG, Gong H. Research on alexnet improvement and optimization method[J]. Comput Engineering and Applications, 2020, 56(20): 124-131. DOI: 10.3778/j.issn.1002-8331.1907-0135.
[17]
Azer SA. challenges facing the detection of colonic polyps: what can deep learning do?[J]. Medicina (Kaunas), 2019, 55(8): 473. DOI: 10.3390/medicina55080473.
[18]
Xu BH, Ding C, Xu GZ. Research on the application of convolution neural network in the diagnosis of Alzheimer's disease[J]. J Biomed Engineer, 2021, 38(01): 169-177. DOI: 10.7507/1001-5515.202007019.
[19]
Jo T, Nho K, Saykin AJ. Deep learning in Alzheimer's disease: diagnostic classification and prognostic prediction using neuroimaging data[J]. Front Aging Neurosci, 2019, 11: 220. DOI: 10.3389/fnagi.2019.00220.
[20]
Pirzada S, Uddin MN, Figley TD, et al. Spatial normalization of multiple sclerosis brain MRI data depends on analysis method and software package[J]. Magn Reson Imaging, 2020, 68: 83-94. DOI: 10.1016/j.mri.2020.01.016.
[21]
Lü HM, Zhao D, Chi XB. Deep learning for early diagnosis of Alzheimer's disease based on intensive AlexNet[J]. J Comput Sci, 2017, 44(S1): 50-60. DOI: 10.11896/j.issn.1002-137X.2017.6A.011.
[22]
Noguchi T, Higa D, Asada T, et al. Artificial intelligence using neural network architecture for radiology (AINNAR): classification of MR imaging sequences[J]. Jpn J Radiol, 2018, 36(12): 691-697. DOI: 10.1007/s11604-018-0779-3.
[23]
Qiu S, Chang GH, Panagia M, et al. Fusion of deep learning models of MRI scans, mini-mental state examination, and logical memory test enhances diagnosis of mild cognitive impairment, Alzheimer's dement (amst)[J]. 2018, 10: 737-749. DOI: 10.1016/j.dadm.2018.08.013.
[24]
Kam TE, Zhang H, Shen D. A novel deep learning framework on brain functional networks for early MCI diagnosis[J]. Med Image Comput Comput Assist Interv, 2018, 11072: 293-301. DOI: 10.1007/978-3-030-00931-1_34.
[25]
Kam TE, Zhang H, Jiao Z, et al. Deep learning of static and dynamic brain functional networks for early MCI detection[J]. IEEE Trans Med Imaging, 2020, 39(2): 478-487. DOI: 10.1109/TMI.2019.2928790.
[26]
Zeng A, Jia LF, Pan D, et al. Early prognosis of Alzheimer's disease based on convolutional neural networks and ensemble learning[J]. J Biomed Engineer, 2019, 36(5): 711-719. DOI: 10.7507/1001-5515.201809040.
[27]
Liu M, Li F, Yan H, et al. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease[J]. Neuroimage, 2020, 208: 116459. DOI: 10.1016/j.neuroimage.2019.116459.
[28]
Jiang J, Kang L, Huang J, et al. Deep learning based mild cognitive impairment diagnosis using structure MR images[J]. Neurosci Lett, 2020, 730: 134971. DOI: 10.1016/j.neulet.2020.134971.
[29]
Kang L, Jiang J, Huang J, et al. Identifying early mild cognitive impairment by multi-modality MRI-based deep learning[J]. Front Aging Neurosci, 2020, 12: 206. DOI: 10.3389/fnagi.2020.00206.
[30]
Jie B, Liu M, Lian C, et al. Designing weighted correlation kernels in convolutional neural networks for functional connectivity based brain disease diagnosis[J]. Med Image Anal, 2020, 63:101709. DOI: 10.1016/j.media.2020.101709.
[31]
Yang D, Huang R, Yoo SH, et al. Detection of mild cognitive impairment using convolutional neural network: temporal-feature maps of functional near-infrared spectroscopy[J]. Front Aging Neurosci, 2020, 12: 141. DOI: 10.3389/fnagi.2020.00141.
[32]
Liu M, Cheng D, Yan W. Alzheimer's disease neuroimaging initiative. Classification of alzheimer's disease by combination of convolutional and recurrent neural networks using FDG-PET images[J]. Front Neuroinform, 2018, 12: 35. DOI: 10.3389/fninf.2018.00035.
[33]
Li F, Liu M. Alzheimer's disease neuroimaging initiative. Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks[J]. Comput Med Imaging Graph, 2018, 70: 101-110. DOI: 10.1016/j.compmedimag.2018.09.009.
[34]
Marzban EN, Eldeib AM, Yassine IA, et al. Alzheimer's disease neurodegenerative initiative. Alzheimer's disease diagnosis from diffusion tensor images using convolutional neural networks[J]. PLoS One, 2020, 15(3): e0230409. DOI: 10.1371/journal.pone.0230409.
[35]
Feng W, Halm-Lutterodt NV, Tang H, et al. Automated MRI-based deep learning model for detection of Alzheimer's disease process[J]. Int J Neural Syst, 2020, 30(6): 2050032. DOI: 10.1142/S012906572050032X.
[36]
Gorji HT, Kaabouch N. A deep learning approach for diagnosis of mild cognitive impairment based on mri images[J]. Brain Sci, 2019, 9(9): 217. DOI: 10.3390/brainsci9090217.
[37]
Basaia S, Agosta F, Wagner L, et al. Alzheimer's disease neuroimaging initiative. Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks[J]. Neuroimage Clin, 2019, 21: 101645. DOI: 10.1016/j.nicl.2018.101645.
[38]
Choi BK, Madusanka N, Choi HK, et al. Convolutional neural network-based MR image analysis for Alzheimer's disease classification[J]. Curr Med Imaging Rev, 2020, 16(1): 27-35. DOI: 10.2174/1573405615666191021123854.
[39]
Wee CY, Liu C, Lee A, et al. Alzheimer's disease neuroimage initiative. Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations[J]. Neuroimage Clin, 2019, 23: 101929. DOI: 10.1016/j.nicl.2019.101929.
[40]
Cui R, Liu M. Alzheimer's disease neuroimaging initiative. RNN-based longitudinal analysis for diagnosis of Alzheimer's disease[J]. Comput Med Imaging Graph, 2019, 73: 1-10. DOI: 10.1016/j.compmedimag.2019.01.005.
[41]
Cui R, Liu M. Hippocampus analysis by combination of 3-D densenet and shapes for Alzheimer's disease diagnosis[J]. IEEE J Biomed Health Inform, 2019, 23(5): 2099-2107. DOI: 10.1109/JBHI.2018.2882392.
[42]
Liu M, Cheng D, Wang K, et al. Alzheimer's disease neuroimaging initiative. multi-modality cascaded convolutional neural networks for Alzheimer's disease diagnosis[J]. Neuroinformatics, 2018, 16(3-4): 295-308. DOI: 10.1007/s12021-018-9370-4.
[43]
Pan D, Zeng A, Jia L, et al. Early detection of Alzheimer's disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning[J]. Front Neurosci, 2020, 14: 259. DOI: 10.3389/fnins.2020.00259.
[44]
Lin W, Tong T, Gao Q, et al. Alzheimer's disease neuroimaging initiative. Convolutional neural networks-based MRI image analysis for the Alzheimer's disease prediction from mild cognitive impairment[J]. Front Neurosci, 2018, 12: 777. DOI: 10.3389/fnins.2018.00777.
[45]
Shen T, Jiang J, Li Y, et al. Decision supporting model for one-year conversion probability from MCI to AD using CNN and SVM[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018: 738-741. DOI: 10.1109/EMBC.2018.8512398.
[46]
Wu C, Guo S, Hong Y, et al. Alzheimer's disease neuroimaging initiative. Discrimination and conversion prediction of mild cognitive impairment using convolutional neural networks[J]. Quant Imaging Med Surg, 2018, 8(10): 992-1003. DOI: 10.21037/qims.2018.10.17.
[47]
Choi H, Jin KH. Alzheimer's disease neuroimaging initiative. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging[J]. Behav Brain Res, 2018, 344: 103-109. DOI: 10.1016/j.bbr.2018.02.017.
[48]
Lian C, Liu M, Pan Y, et al. Attention-guided hybrid network for dementia diagnosis with structural MR images[J]. IEEE Trans Cybern, 2020, 28: 1-12. DOI: 10.1109/TCYB.2020.3005859.

PREV The analysis method of intracranial hypointense disease on T2WI
NEXT Research progress of arterial spin labeling imaging in early diagnosis and prognosis evaluation of brain injury in premature infants
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn