Share:
Share this content in WeChat
X
Review
Progress of multimodality magnetic resonance imaging in genotyping and prognostic evaluation of gliomas
ZHAO Huan  BAI Yan  WANG Meiyun 

Cite this article as: Zhao H, Bai Y, Wang MY. Progress of multimodality magnetic resonance imaging in genotyping and prognostic evaluation of gliomas[J]. Chin J Magn Reson Imaging, 2021, 12(9): 98-102. DOI:10.12015/issn.1674-8034.2021.09.025.


[Abstract] Glioma is the most common intracranial primary tumor in adults, which is prone to recurrence, poor prognosis, and great harm. Genotyping of gliomas is important for the selection of treatment options and prognosis prediction. As the first choice for the diagnosis and evaluation of glioma, magnetic resonance imaging is of great value in reflecting genotyping as well as prognostic evaluation.This article reviews the research progress of multimodality magnetic resonance imaging (MRI) in genotyping and prognostic evaluation of glioma.
[Keywords] multimodality magnetic resonance imaging;functional magnetic resonance imaging;diffusion weighted imaging;diffusion tensor imaging;brain glioma;genotyping;prognosis

ZHAO Huan1, 2   BAI Yan1, 2   WANG Meiyun1, 2*  

1 Department of Medical Imaging, the People's Hospital of Henan University (Henan Provincial People's Hospital), Zhengzhou 450003, China

2 Henan Key Laboratory of Imaging Diagnosis and Research on Neurological Diseases, Henan Provincial People's Hospita, Zhengzhou 450003, China

Wang MY, E-mail: mywang@ha.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS This work is supported by the National Natural Science Foundation of China (No. 81720108021); National Key R&D Program Project (No. 2017YFE0103600); Henan Province Medical Science and Technology Research Project (No. 2018020403, SBGJ202003002).
Received  2021-05-12
Accepted  2021-07-05
DOI: 10.12015/issn.1674-8034.2021.09.025
Cite this article as: Zhao H, Bai Y, Wang MY. Progress of multimodality magnetic resonance imaging in genotyping and prognostic evaluation of gliomas[J]. Chin J Magn Reson Imaging, 2021, 12(9): 98-102. DOI:10.12015/issn.1674-8034.2021.09.025.

[1]
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
[2]
Naeim B, Hartman SJ, Chang YH, et al. Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics[J]. J Neuro Oncol, 2018, 139(3): 633-642. DOI: 10.1007/s11060-018-2908-3.
[3]
Wang Z, Xu ZH, Sun JC, et al. Clinical significance of IDH1 gene mutation and MGMT gene promoter methylation in glioma[J]. J Oncol, 2018, 24(011): 1118-1121.
[4]
Beiko J, Suki D, Hess KR, et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection[J]. Neuro Oncol, 2014, 16(1): 81-91. DOI: 10.1093/neuonc/not159.
[5]
Liu QQ, Yin XX, Zou Y, et al. Prognostic significance of combined TERT and IDH gene mutation analysis in diffusely infiltrating gliomas[J]. Zhonghua Bing Li Xue Za Zhi, 2018, 47(9): 658-663. DOI: 10.3760/cma.j.issn.0529-5807.2018.09.002.
[6]
Hegi ME, Liu L, Herman JG, et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity[J]. J Clin Oncol, 2008, 26(25): 4189-4199. DOI: 10.1200/JCO.2007.11.5964.
[7]
Bai J, Varghese J, Jain R. Adult Glioma WHO Classification Update, genomics, and imaging: what the radiologists need to Know[J]. Top Magn Reson Imaging, 2020, 29(2): 71-82. DOI: 10.1097/RMR.0000000000000234.
[8]
Pandith AA, Qasim I, Zahoor W, et al. Concordant association validates MGMT methylation and protein expression as favorable prognostic factors in glioma patients on alkylating chemotherapy (temozolomide)[J]. Sci Rep, 2018, 8(1): 6704. DOI: 10.1038/s41598-018-25169-2.
[9]
Förster A, Brehmer S, Seiz-Rosenhagen M, et al. Heterogeneity of glioblastoma with gliomatosis cerebri growth pattern on diffusion and perfusion MRI[J]. J Neuro Oncol, 2019, 142(1): 103-109. DOI: 10.1007/s11060-018-03068-w.
[10]
Zhang L, Min ZQ, Tang M, et al. The utility of diffusion MRI with quantitative ADC measurements for differentiating high-grade from low-grade cerebral gliomas: evidence from a meta-analysis[J]. J Neurol Sci, 2017, 373: 9-15. DOI: 10.1016/j.jns.2016.12.008.
[11]
Wu CC, Jain R, Radmanesh A, et al. Predicting genotype and survival in glioma using standard clinical MR imaging apparent diffusion coefficient images: a pilot study from the cancer genome atlas[J]. AJNR Am J Neuroradiol, 2018, 39(10): 1814-1820. DOI: 10.3174/ajnr.A5794.
[12]
Xing Z, Zhang H, She D, et al. IDH genotypes differentiation in glioblastomas using DWI and DSC-PWI in the enhancing and peri-enhancing region[J]. Acta Radiol, 2019, 60(12):1663-1672. DOI: 10.1177/0284185119842288.
[13]
Lee S, Choi S H, Ryoo I, et al. Evaluation of the microenvironmental heterogeneity in high-grade gliomas with IDH1/2 gene mutation using histogram analysis of diffusion-weighted imaging and dynamic-susceptibility contrast perfusion imaging[J]. J Neuro Oncol, 2015, 121(1): 141-150. DOI: 10.1007/s11060-014-1614-z.
[14]
Romano A, Calabria LF, Tavanti F, et al. Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in glioblastomas: correlation with MGMT promoter methylation status[J]. Eur Radiol, 2013, 23(2): 513-520. DOI: 10.1007/s00330-012-2601-4.
[15]
Moon WJ, Choi JW, Roh HG, et al. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging[J]. Neuroradiology, 2012, 54(6): 555-563. DOI: 10.1007/s00234-011-0947-y.
[16]
Sunwoo L, Choi SH, Park CK, et al. Correlation of apparent diffusion coefficient values measured by diffusion MRI and MGMT promoter methylation semiquantitatively analyzed with MS-MLPA in patients with glioblastoma multiforme[J]. J Magn Reson Imaging, 2013, 37(2): 351-358. DOI: 10.1002/jmri.23838.
[17]
Pope WB, Lai A, Mehta R, et al. Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma[J]. Am J Neuroradiol, 2011, 32(5): 882-889. DOI: 10.3174/ajnr.A2385.
[18]
Choi YS, Ahn SS, Kim DW, et al. Incremental prognostic value of ADC histogram analysis over MGMT promoter methylation status in patients with glioblastoma[J]. Radiology, 2016, 281(1): 175-84. DOI: 10.1148/radiol.2016151913.
[19]
Young RJ, Gupta A, Shah AD, et al. Potential role of preoperative conventional MRI including diffusion measurements in assessing epidermal growth factor receptor gene amplification status in patients with glioblastoma[J]. AJNR Am J Neuroradiol, 2013, 34(12): 2271-2277. DOI: 10.3174/ajnr.A3604.
[20]
Park YW, Ahn SS, Park CJ, et al. Diffusion and perfusion MRI may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas[J]. Eur Radiol, 2020, 30(12):6475-6484. DOI: 10.1007/s00330-020-07090-3.
[21]
Hong EK, Choi SH, Dong JS, et al. Radiogenomics correlation between MR imaging features and major genetic profiles in glioblastoma[J]. Eur Radiol, 2018, 28(10): 1-12. DOI: 10.1007/s00330-018-5400-8.
[22]
Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review[J]. J Mol Neurosci Mn, 2008, 34(1): 51-61. DOI: 10.1007/s12031-007-0029-0.
[23]
Gupta RK, Cloughesy TF, Sinha U, et al. Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma[J]. J Neuro Oncol, 2000, 50(3): 215-226. DOI: 10.1023/a:1006431120031.
[24]
Price SJ, Pena A, Burnet NG, et al. Tissue signature characterisation of diffusion tensor abnormalities in cerebral gliomas[J]. Eur Radiol, 2004, 14(10): 1909-1917. DOI: 10.1007/s00330-004-2381-6.
[25]
Jütten K, Mainz V, Gauggel S, et al. Diffusion tensor imaging reveals microstructural heterogeneity of normal-appearing white matter and related cognitive dysfunction in glioma patients[J]. Fron Oncol, 2019, 9: 536-536. DOI: 10.3389/fonc.2019.00536.
[26]
Xiong J, Tan WL, Pan JW, et al. Detecting isocitrate dehydrogenase gene mutations in oligodendroglial tumors using diffusion tensor imaging metrics and their correlations with proliferation and microvascular density[J]. J Magn Reson Imaging, 2016, 43(1). DOI: 10.1002/jmri.24958.
[27]
Yan JL, Hoorn A, Larkin TJ, et al. Extent of resection of peritumoral diffusion tensor imaging-detected abnormality as a predictor of survival in adult glioblastoma patients[J]. J Neurosurg, 2017, 126(1): 1-8. DOI: 10.3171/2016.1.JNS152153.
[28]
Aliotta E, Batchala PP, Schiff D, et al. Increased intratumoral infiltration in IDH wild-type lower-grade gliomas observed with diffusion tensor imaging[J]. J Neuro Oncol, 2019, 145(26). DOI: 10.1007/s11060-019-03291-z.
[29]
Price SJ, Boonzaier NR, Lupson V, et al. O7.03 IDH-1 mutated glioblastomas have a less invasive phenotype than IDH-1 wild type glioblastomas: a diffusion tensor imaging study[J]. Neuro Oncol, (suppl 2): ii15.
[30]
Jellison BJ, Field AS, Medow J, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns[J]. AJNR Am J Neuroradiol, 2004, 25(3): 356-369.
[31]
Zheng W, Wu C, Huang L, et al. Diffusion kurtosis imaging of microstructural alterations in the brains of paediatric patients with congenital sensorineural hearing loss[J]. Sci Rep, 2017, 7(1):1543. DOI: 10.1038/s41598-017-01263-9.
[32]
Hempel JM, Bisdas S, Schittenhelm J, et al. In vivo molecular profiling of human glioma using diffusion kurtosis imaging[J]. J Neuro Oncol, 2017, 131(1): 93-101. DOI: 10.1007/s11060-016-2272-0.
[33]
Zhao J, Wang YL, Li XB, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status[J]. J Neuro Oncol, 2019,141(1): 195-203. DOI: 10.1007/s11060-018-03025-7.
[34]
Zhao J, Wang YL, Li X, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status[J]. J Neuro Oncol, 2018, 141(1): 195-203. DOI: 10.1007/s11060-018-03025-7.
[35]
Xing Z, Yang X, She D, et al. Noninvasive assessment of IDH mutational status in World Health Organization Grade II and III astrocytomas using DWI and DSC-PWI combined with conventional MR imaging[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1138-1144. DOI: 10.3174/ajnr.A5171.
[36]
Kickingereder P, Sahm F, Radbruch A, et al. IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma[J]. Rep, 2015, 5: 16238. DOI: 10.1038/srep16238.
[37]
Hilario A, Hernandez-Lain A, Sepulveda JM, et al. Perfusion MRI grading diffuse gliomas: Impact of permeability parameters on molecular biomarkers and survival[J]. Neurocirugía (Engl Ed), 2019, 30(1): 11-18. DOI: 10.1016/j.neucir.2018.06.004.
[38]
Ryoo I, Choi SH, Kim JH, et al. Cerebral blood volume calculated by dynamic susceptibility contrast-enhanced perfusion MR imaging: preliminary correlation study with glioblastoma genetic profiles[J]. PloS One, 2013, 8(8): e71704. DOI: 10.1371/journal.pone.0071704.
[39]
Ahn SS, Shin NY, Chang JH, et al. Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg, 2014, 121(2): 367-373. DOI: 10.3171/2014.5.JNS132279.
[40]
Arevalo-Perez J, Thomas AA, Kaley T, et al. T1-weighted dynamic contrast-enhanced MRI as a noninvasive biomarker of epidermal growth factor receptor vIII status[J]. AJNR Am J Neuroradiol, 2015, 36(12): 2256. DOI: 10.3174/ajnr.A4484.
[41]
Brendle C, Hempel JM, Schittenhelm J, et al. glioma grading and determination of IDH mutation status and ATRX loss by DCE and ASL perfusion[J]. Clin Neuroradiol, 2017, (5897): 1-8. DOI: 10.1007/s00062-017-0590-z.
[42]
Han Y, Yan LF, Wang XB, et al. Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: a region of interest based analysis[J]. BMC Cancer, 2018, 18(1): 215. DOI: 10.1186/s12885-018-4114-2.
[43]
Pope WB, Prins RM, Thomas MA, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy[J]. J Neuro Oncol, 2012, 107(1): 197-205. DOI: 10.1007/s11060-011-0737-8.
[44]
de la Fuente MI, Young RJ, Rubel J, et al. Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma[J]. Neuro Oncol, 2016, 18(2): 283-290. DOI: 10.1093/neuonc/nov307.

PREV The research progress of high-resolution magnetic resonance vessel wall imaging in intracranial atherosclerotic plaques
NEXT Application progress of MRI in central nervous system of heat stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn