Share:
Share this content in WeChat
X
Review
Research progress of cardiovascular magnetic resonance in quantitative evaluation of tissue and function of myocardial hypertrophy
GUO Wei  WANG Xiaohua 

Cite this article as: Guo W, Wang XH. Research progress of cardiovascular magnetic resonance in quantitative evaluation of tissue and function of myocardial hypertrophy[J]. Chin J Magn Reson Imaging, 2021, 12(9): 106-108. DOI:10.12015/issn.1674-8034.2021.09.027.


[Abstract] Cardiovascular magnetic resonance (CMR) has gradually developed into an indispensable tool in cardiology. It is a non-invasive technique, which can objectively evaluate the structure and function of myocardial tissue. In recent years, with the innovation of cardiac magnetic resonance scanning technology and the application of parallel acquisition, T1 mapping and T2 mapping technology can better quantitatively study the characteristics of myocardial tissue. Cardiac diffusion tensor imaging (DTI) can detect the movement direction and amplitude of water molecules in myocardial fibers at microscopic level. The emergence of myocardial strain technology provides a new choice for clinical evaluation of cardiac function. Great progress has been made in computer processing capacity and cloud computing, which effectively promotes the development of CMR artificial intelligence. This review summarizes the new progress of T1 mapping, T2 mapping, DTI, myocardial strain technology and artificial intelligence in quantitative evaluation of tissue and function of myocardial hypertrophy.
[Keywords] cardiovascular magnetic resonance;myocardial hypertrophy;T1 mapping technology;T2 mapping technology;diffusion tensor imaging;myocardial strain;artificial intelligence

GUO Wei   WANG Xiaohua*  

Department of Radiology, Peking University Third Hospital, Beijing 100191, China

Wang XH, E-mail: tensh.med@163.com

Conflicts of interest   None.

Received  2021-03-25
Accepted  2021-06-16
DOI: 10.12015/issn.1674-8034.2021.09.027
Cite this article as: Guo W, Wang XH. Research progress of cardiovascular magnetic resonance in quantitative evaluation of tissue and function of myocardial hypertrophy[J]. Chin J Magn Reson Imaging, 2021, 12(9): 106-108. DOI:10.12015/issn.1674-8034.2021.09.027.

[1]
Demirkiran A, Everaars H, Amier RP, et al.Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(7): 723-734. DOI: 10.1093/ehjci/jez094.
[2]
Reinstadler SJ, Thiele H, Eitel I. Risk stratification by cardiac magnetic resonance imaging after ST-elevation myocardial infarction[J]. Curr Opin Cardiol, 2015, 30(6): 681-689. DOI: 10.1097/HCO.0000000000000227.
[3]
Heydari B, Kwong RY, Jerosch-Herold M. Technical advances and clinical applications of quantitative myocardial blood flow imaging with cardiac MRI[J]. Prog Cardiovasc Dis, 2015, 57(6): 615-622. DOI: 10.1016/j.pcad.2015.02.003.
[4]
Lewis AJM, Rider OJ. The use of cardiovascular magnetic resonance for the assessment of left ventricular hypertrophy[J]. Cardiovasc Diagn Ther, 2020, 10(3): 568-582. DOI: 10.21037/cdt.2020.01.14.
[5]
Amzulescu MS, De Craene M, Langet H, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(6): 605-619. DOI: 10.1093/ehjci/jez041.
[6]
Al'Aref SJ, Anchouche K, Singh G, et al.Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging[J]. Eur Heart J, 2019, 40(24): 1975-1986. DOI: 10.1093/eurheartj/ehy404.
[7]
Taylor AJ, Salerno M, Dharmakumar R, et al. T1 Mapping: Basic Techniques and Clinical Applications[J]. JACC Cardiovasc Imaging, 2016, 9(1): 67-81. DOI: 10.1016/j.jcmg.2015.11.005.
[8]
Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis[J]. JACC Cardiovasc Imaging, 2013, 6(4): 488-497. DOI: 10.1016/j.jcmg.2012.11.013.
[9]
Sado DM, White SK, Piechnik SK, et al. Identification and assessment of anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping[J]. Circ Cardiovasc Imaging, 2013, 6(3): 392-398. DOI: 10.1161/CIRCIMAGING.112.000070.
[10]
Karur GR, Robison S, Iwanochko RM, et al. Use of myocardial T1 mapping at 3.0 T to differentiate anderson-fabry disease from hypertrophic cardiomyopathy[J]. Radiology, 2018, 288(2): 398-406. DOI: 10.1148/radiol.2018172613.
[11]
Nakamori S, Dohi K, Ishida M, et al. Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2018, 11(1): 48-59. DOI: 10.1016/j.jcmg.2017.04.006.
[12]
Treibel TA, Fridman Y, Bering P, et al. Extracellular volume associates with outcomes more strongly than native or post-contrast myocardial T1[J]. JACC Cardiovasc Imaging, 2020, 13(1Pt 1): 44-54. DOI: 10.1016/j.jcmg.2019.03.017.
[13]
Craven TP, Tsao CW, La Gerche A, et al. Exercise cardiovascular magnetic resonance: development, current utility and future applications[J]. J Cardiovasc Magn Reson, 2020, 22(1): 65. DOI: 10.1186/s12968-020-00652-w.
[14]
Maestrini V, Torlasco C, Hughes R, et al. Cardiovascular magnetic resonance and sport cardiology: a growing role in clinical dilemmas[J]. J Cardiovasc Transl Res, 2020, 13(3): 296-305. DOI: 10.1007/s12265-020-10022-7.
[15]
Swoboda PP, McDiarmid AK, Erhayiem B, et al. Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from athlete's heart[J]. J Am College Cardiol, 2016, 67: 2189-2190. DOI: 10.1016/j.jacc.2016.02.054.
[16]
Jellis CL, Kwon DH. Myocardial T1 mapping: modalities and clinical applications[J]. Cardiovasc Diagn Ther, 2014, 4(2): 126-137. DOI: 10.3978/j.issn.2223-3652.2013.09.03.
[17]
Lota AS, Gatehouse PD, Mohiaddin RH. T2 mapping and T2* imaging in heart failure[J]. Heart Fail Rev, 2017, 22(4): 431-440. DOI: 10.1007/s10741-017-9616-5.
[18]
Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations[J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072.
[19]
Baeßler B, Schaarschmidt F, Stehning C, et al. A systematic evaluation of three different cardiac T2-mapping sequences at 1.5 and 3 T in healthy volunteers[J]. Eur J Radiol, 2015, 84(11): 2161-2170. DOI: 10.1016/j.ejrad.2015.08.002.
[20]
Ariga R, Tunnicliffe EM, Manohar SG, et al. Identification of myocardial disarray in patients with hypertrophic cardiomyopathy and ventricular arrhythmias[J]. J Am Coll Cardiol, 2019, 73: 2493-2502. DOI: 10.1016/j.jacc.2019.02.065.
[21]
Ibrahim el-SH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications[J]. J Cardiovasc Magn Reson, 2011, 13(1): 36. DOI: 10.1186/1532-429X-13-36.
[22]
Pedrizzetti G, Claus P, Kilner PJ, et al. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use[J]. J Cardiovasc Magn Reson, 2016, 18(1): 51. DOI: 10.1186/s12968-016-0269-7.
[23]
Hinojar R, Fernandez-Golfin C, Gonzalez-Gomez A. Prognostic implications of global myocardial mechanics in hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking. Relations to left ventricular hypertrophy and fibrosis[J]. Int J Cardiol, 2017, 249: 467-472. DOI: 10.1016/j.ijcard.2017.07.087.
[24]
Baessler B, Schaarschmidt F, Dick A. Diagnostic implications of magnetic resonance feature tracking derived myocardial strain parameters in acute myocarditis[J]. Eur J Radiol, 2016, 85(1): 218-227. DOI: 10.1016/j.ejrad.2015.11.023.
[25]
Cheng S, Larson MG, McCabe EL, et al. Age- and sex-based reference limits and clinical correlates of myocardial strain and synchrony: the Framingham Heart Study[J]. Circ Cardiovasc Imaging, 2013, 6(5): 692-699. DOI: 10.1161/CIRCIMAGING.112.000627.
[26]
Seetharam K, Kagiyama N, Sengupta PP. Application of mobile health, telemedicine and artificial intelligence to echocardiography[J]. Echo Res Pract, 2019, 6(2): R41-R52. DOI: 10.1530/ERP-18-0081.
[27]
Seetharam K, Shrestha S, Sengupta PP. Artificial intelligence in cardiovascular medicine[J]. Curr Treat Options Cardiovasc Med, 2019, 21(6): 25. DOI: 10.1007/s11936-019-0728-1.
[28]
Shameer K, Johnson KW, Glicksberg BS, et al. Machine learning in cardiovascular medicine: are we there yet?[J]. Heart, 2018, 104(14): 1156-1164. DOI: 10.1136/heartjnl-2017-311198.
[29]
Winther HB, Hundt C, Schmidt B, et al. Deep learning for generalized biventricular mass and function parameters using multicenter cardiac MRI data[J]. JACC Cardiovasc Imaging, 2018, 11(7): 1036-1038. DOI: 10.1016/j.jcmg.2017.11.013.
[30]
Tan LK, Liew YM, Lim E, et al. Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences[J]. Med Image Anal, 2017, 39: 78-86. DOI: 10.1016/j.media.2017.04.002.
[31]
Bai W, Sinclair M, Tarroni G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks[J]. J Cardiovasc Magn Reson, 2018, 20(1): 65. DOI: 10.1186/s12968-018-0471-x.

PREV Application progress of MRI in central nervous system of heat stroke
NEXT Progress in imaging assessment of the risk of esophageal varices and bleeding in cirrhosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn