Share:
Share this content in WeChat
X
Review
Research progress of multimodal MRI in renal cell carcinoma
YU Wei  YANG Yang  WU Yinghua 

Cite this article as: Yu W, Yang Y, Wu YH. Research progress of multimodal MRI in renal cell carcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(9): 113-115, 120. DOI:10.12015/issn.1674-8034.2021.09.029.


[Abstract] Renal cell carcinoma is one of the most common malignant tumors of urinary system. Its early diagnosis is still a challenging problem in clinical practice. Multimodal magnetic resonance imaging analyses the disease from anatomy and functional imaging, and provides important information for the early imaging diagnosis and the evaluation of therapeutic response of renal cell carcinoma by means of new magnetic resonance imaging technology to improve the prognosis of patients. The purpose of this article is to review the progress of magnetic resonance imaging in renal cell carcinoma.
[Keywords] renal cell carcinoma;diagnosis;magnetic resonance imaging

YU Wei   YANG Yang   WU Yinghua*  

Department of Radiology, the Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China

Wu YH, E-mail: 13550022152@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This work was Fund by Science and Technology Program of Sichuan Program (No. 2019YFS0445).
Received  2021-04-11
Accepted  2021-06-03
DOI: 10.12015/issn.1674-8034.2021.09.029
Cite this article as: Yu W, Yang Y, Wu YH. Research progress of multimodal MRI in renal cell carcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(9): 113-115, 120. DOI:10.12015/issn.1674-8034.2021.09.029.

[1]
Wang Q, Wang BJ, Li XL, et al. Clinical, pathological features and prognosis of renal carcinoma: a single-center analysis of 4167 cases[J], Med J Chin PLA, 2019, 44(8): 666-670. DOI: 10.11855/j.issn.0577-7402.2019.08.07.
[2]
Ferlay J, Autier P, Boniol M, et al. Estimates of the cancer incidence and mortality in Europe in 2006[J]. Ann Oncol, 2007, 18(3): 581-592. DOI: 10.1093/annonc/mdl498.
[3]
Shilpa G, Philippe ES. The prospects of pazopanib in advanced renal cell carcinoma[J]. Ther Adv Urol, 2013, 5(5): 223-232. DOI: 10.1177/1756287213495099.
[4]
Wu JY, Mi Y, LS, et al. Evaluating inferior vena cava wall invasion in renal cell carcinoma tumor thrombus with MRl, J Peking University (Health Sci), 2019, 51(4): 673-677. DOI: 10.19723/j.issn.1671-167X.2019.04.013.
[5]
Akın IB, Altay C, Güler E, et al. Discrimination of oncocytoma and chromophobe renal cell carcinoma using MRI[J]. Diagn Interv Radiol (Ankara, Turkey), 2019, 25(1): 5-13. DOI: 10.5152/dir.2018.18013.
[6]
Rocco P, Valeria P, Riccardo M, et al. Accuracy of magnetic resonance imaging to identify pseudocapsule invasion in renal tumors[J]. World J Urol, 2020, 38(2): 407-415. DOI: 10.1007/s00345-019-02755-1.
[7]
Hynek M, Eva K, Jan K, et al. Diffusion-weighted imaging using 3.0 T MRI as a possible biomarker of renal tumors[J]. Anticancer Res, 2015, 35(4): 2351-2357.
[8]
Lu R, Xu CY, Lin L, et al. Diagnostic value of 3.0 T magnetic resonance DWI quantitative imaging in renal neoplasm. Chin J Clin Med, 2018, 25(4): 601-605. DOI: 10.12025/j.issn.1008-6358.2018.20170573.
[9]
Sungmin W, Chong Hyun S, Sang Youn K, et al. Diagnostic performance of DWI for differentiating high- from low-grade clear cell renal cell carcinoma: a systematic review and Meta-analysis[J]. AJR. Am J Roentgenol, 2017, 209(6): W374-W381. DOI: 10.2214/AJR.17.18283.
[10]
Lothar P, Domagoj J, Gertraud H, et al. Inter-observer variation and diagnostic efficacy of apparent diffusion coefficient (ADC) measurements obtained by diffusion-weighted imaging (DWI) in small renal masses[J]. Acta Radiol, 2016, 57(8): 1014-1020. DOI: 10.1177/0284185115610934.
[11]
Illjuk P, Dutka I, Mytsyk Y, et al. Differential diagnosis of the small renal masses: role of the apparent diffusion coefficient of the diffusion-weighted MRI[J]. Int Urol Nephrol, 2018, 50(2): 197-204. DOI: 10.1007/s11255-017-1761-1.
[12]
Gu ZC, Zhang YH. Diagnostic value of magnetic resonance DWI combined with T2WI in small renal carcinoma subtypes, Heilongjiang Traditional Chin Med, 2019, 48(4): 89-91
[13]
Zhang Y, The research status of DWI new technology IVIM and DKI in the grade of renal carcinoma. J Pract Radiol, 2020, 36(11): 1873-1876. DOI: 10.3969/j.issn.1002-1671.2020.11.042.
[14]
Wu J, Zhu Q, Zhu W, et al. Value of intravoxel incoherent motion in assessment of pathological grade of clear cell renal cell carcinoma[J]. Acta Radiol, 2018, 59(1): 121-127. DOI: 10.1177/0284185117716702.
[15]
Ye J, Xu Q, Wang SA, et al. Quantitative evaluation of intravoxel incoherent motion and diffusion kurtosis imaging in assessment of pathological grade of clear cell renal cell carcinoma[J]. Acad Radiol, 2020, 27(7): e176-e182. DOI: 10.1016/j.acra.2019.10.010.
[16]
Cong XY, Chen Y, Zhang J, et al. Application of diffusion-weighted intravoxel incoherent motion imaging in diagnosis of renal cell carcinoma subtypes[J]. Zhonghua zhong liu za zhi, 2016, 38(6):434-439. DOI: 10.3760/cma.j.issn.0253-3766.2016.06.007.
[17]
Wang JY, Abdi H, Bakhadirov K, et al. A comprehensive reliability assessment of quantitative diffusion tensor tractography[J]. Neuroimage, 2012, 60(2): 1127-1138. DOI: 10.1016/j.neuroimage.2011.12.062.
[18]
Feng Q, Fang W, Sun XP, et al. Renal clear cell carcinoma: diffusion tensor imaging diagnostic accuracy and correlations with clinical and histopathological factors[J]. Clin Radiol, 2017, 72(7): 560-564. DOI: 10.1016/j.crad.2017.02.016.
[19]
Geng L, Cong RL, Huang Z, et al. To discuss the value of diffusion tensor imaging in solid renal tumors. Clin J Radiol, 2017, 36(4): 522-525.
[20]
Qiang F, Zhijun M, Sujuan Z, et al. Usefulness of diffusion tensor imaging for the differentiation between low-fat angiomyolipoma and clear cell carcinoma of the kidney[J]. Springerplus, 2016, 5:12. DOI: 10.1186/s40064-015-1627-x.
[21]
Wang K, Cheng JY, Wang Y, et al. Renal cell carcinoma: preoperative evaluate the grade of histological malignancy using volumetric histogram analysis derived from magnetic resonance diffusion kurtosis imaging[J]. Quant Imag Med Surg, 2019, 9(4): 671-680. DOI: 10.21037/qims.2019.04.14.
[22]
Cao JF, Luo X, Zhou ZM, et al. Comparison of diffusion-weighted imaging mono-exponential mode with diffusion kurtosis imaging for predicting pathological grades of clear cell renal cell carcinoma[J]. Eur J Radiol, 2020, 130. DOI: 10.1016/j.ejrad.2020.109195.
[23]
Zhu QQ, Zhu WR, Ye J, et al. Value of diffusion kurtosis imaging in assessment of pathological grade of clear cell renal cell carcinoma.Chin J Radiol, 2017, 51(3): 188-191. DOI: 10.3760/cma.j.issn.1005?1201.2017.03.007.
[24]
Wu GY, Zhang RY, Mao HM, et al. The value of blood oxygen level dependent (BOLD) imaging in evaluating post-operative renal function outcomes after laparoscopic partial nephrectomy[J]. Eur Radiol, 2018, 28(12). DOI: 10.1007/s00330-018-5525-9.
[25]
Zhang YY, Xu RT, Liu Y, et al. BOLD MRI in the evaluation of oxygenation leval in renal cell carcinoma and adjacent renal tissue. Chin J Med Imaging Technol, 2012, 28(4) : 756-759.
[26]
Cai LZ, Xing W, Chen J, et al. Study on the evaluation of the correlation between the expression level of HIF in clear cell renal cell carcinoma and R2*. Clin J Radiol, 2016, 35(4): 585-588.
[27]
Natsuko M, Nobuhiko H, Yoshiharu K, et al. Assessment of myocardial fibrosis using T1-mapping and extracellular volume measurement on cardiac magnetic resonance imaging for the diagnosis of radiation-induced cardiomyopathy[J]. J Cardiol Cases, 2018, 18(4): 132-135. DOI: 10.1016/j.jccase.2018.06.001.
[28]
Jinning L, Huanhuan L, Caiyuan Z, et al. Native T1 mapping compared to ultrasound elastography for staging and monitoring liver fibrosis: an animal study of repeatability, reproducibility, and accuracy[J]. Eur Radiol, 2020, 30(1): 337-345. DOI: 10.1007/s00330-019-06335-0.
[29]
Wang SA, Li JH, ZhuDR, et al. Contrast-enhanced magnetic resonance (MR) T1 mapping with low-dose gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) is promising in identifying clear cell renal cell carcinoma histopathological grade and differentiating fat-poor angiomyolipoma[J]. Quant Imag Med Surg, 2020, 10(5): 988-998. DOI: 10.21037/qims-19-723.
[30]
Lisa CA, Philipp J, Bernhard R, et al. Assessment of the extracellular volume fraction for the grading of clear cell renal cell carcinoma: first results and histopathological findings[J]. Eur Radiol, 2019, 29(11): 5832-5843. DOI: 10.1007/s00330-019-06087-x.
[31]
Becker AS, Rossi C. Renal arterial spin labeling magnetic resonance imaging[J]. Nephron, 2017, 135(1): 1-5. DOI: 10.1159/000450797
[32]
Rachel S, David CA, Ivan P, et al. Does arterial spin-labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model?[J]. Radiology, 2009, 251(3): 731-742. DOI: 10.1148/radiol.2521081059.
[33]
Cedric DB, Neil MR, Guillaume D, et al. Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma(1)[J]. Acad Radiol, 2005, 12(3): 347-357. DOI: 10.1016/j.acra.2004.12.012.
[34]
Ivan P, David CA, Neil MR. Magnetic resonance imaging as a biomarker in renal cell carcinoma[J]. Cancer, 2009, 115(10Suppl): 2334-2345. DOI: 10.1002/cncr.24237.
[35]
Andreas B, Petros M, Christina S, et al. Morphological, contrast-enhanced and spin labeling perfusion imaging for monitoring of relapse after RF ablation of renal cell carcinomas[J]. Eur Radiol, 2006, 16(6): 1226-1236. DOI: 10.1007/s00330-005-0098-9.
[36]
Rotem s, Phil MR, Maryellen RS, et al. Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings[J]. Radiology, 2012, 265(3): 799-808. DOI: 10.1148/radiol.12112260.
[37]
Jing Y, Qing X, Shou-An W, et al. Differentiation between fat-poor angiomyolipoma and clear cell renal cell carcinoma: qualitative and quantitative analysis using arterial spin labeling MR imaging[J]. Abdom Radiol (NY), 2020, 45(2): 512-519. DOI: 10.1007/s00261-019-02303-w.
[38]
Fischbach F, Schirmer T, Thormann M, et al. Quantitative proton magnetic resonance spectroscopy of the normal liver and malignant hepatic lesions at 3.0 tesla[J]. Eur Radiol, 2008, 18(11): 2549-2558. DOI: 10.1007/s00330-008-1040-8.
[39]
Rachel K, Neil MR, Martina MM, et al. Decreases in free cholesterol and fatty acid unsaturation in renal cell carcinoma demonstrated by breath-hold magnetic resonance spectroscopy[J]. Am J Physiol Renal physiol, 2005, 288(4): F637-F641. DOI: 10.1152/ajprenal.00140.2004.

PREV Progress in imaging assessment of the risk of esophageal varices and bleeding in cirrhosis
NEXT Research progress of chemical exchange saturation transfer imaging technology in musculoskeletal system
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn