Share:
Share this content in WeChat
X
Review
Research progress of chemical exchange saturation transfer imaging technology in musculoskeletal system
WANG Mei  ZHANG Xiaodong 

Cite this article as: Wang M, Zhang XD. Research progress of chemical exchange saturation transfer imaging technology in musculoskeletal system[J]. Chin J Magn Reson Imaging, 2021, 12(9): 116-120. DOI:10.12015/issn.1674-8034.2021.09.030.


[Abstract] Chemical exchange saturation transfer imaging (CEST) is a new type of magnetic resonance imaging technology, which can produce semi-quantitative results using the magnetization transfer ratio asymmetry (MTRasym) analysis, which can provide early diagnosis of musculoskeletal system related diseases and surgical decisions are of great significance. Traditional MRI can only reflect the morphological differences of the lesion, and it is difficult to provide help for the early diagnosis of the disease. CEST technology realizes early diagnosis of osteoarthritis (OA), intervertebral discs degeneration, and post operative evaluation of cartilage repair surgery by detecting changes in metabolites in anatomical structures. This technology has the advantages of non-invasive and quantitative detection, and has been widely developed and applied in the central nervous system and musculoskeletal system. This article summarizes the concept, principle, signal measurement and clinical application in the musculoskeletal system of CEST.
[Keywords] chemical exchange saturation transfer;magnetic resonance imaging;osteoarthritis;progress;early diagnosis;postoperative evaluation

WANG Mei1   ZHANG Xiaodong2*  

1 Department of Radiology, Nansha Hospital, Guangzhou First People's Hospital, Guangzhou 511458, China

2 Department of Radiology, the Third Affiliated Hospital, Southern Medical University (Academy of orthopedics, Guangzhou), Guangzhou 510630, China

Zhang XD, E-mail: ddautumn@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This work was part of National Natural Science Foundation of China (No. 81801653).
Received  2021-04-29
Accepted  2021-06-16
DOI: 10.12015/issn.1674-8034.2021.09.030
Cite this article as: Wang M, Zhang XD. Research progress of chemical exchange saturation transfer imaging technology in musculoskeletal system[J]. Chin J Magn Reson Imaging, 2021, 12(9): 116-120. DOI:10.12015/issn.1674-8034.2021.09.030.

[1]
Jones CK, Huang A, Xu J, et al. Nuclear overhauser enhancement (NOE) imaging in the human brain at 7 T[J]. Neuroimage, 2013, 77: 114-124. DOI: 10.1016/j.neuroimage.2013.03.047.
[2]
Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1): 79-87. DOI: 10.1006/jmre.1999.1956.
[3]
Kogan F, Hariharan H, Reddy R. Chemical exchange saturation transfer (CEST) imaging: description of technique and potential clinical applications[J]. Curr Radiol Rep, 2013, 1(2): 102-114. DOI: 10.1007/s40134-013-0010-3.
[4]
Sherry AD, Woods M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging[J]. Annu Rev Biomed Eng, 2008, 10: 391-411. DOI: 10.1146/annurev.bioeng.9.060906.151929.
[5]
Xu J , Zhao SH, Lu MJ, et al. Advances of chemical exchange saturation transfer in cardiac MRI[J]. Chin J Med Imaging Technol, 2020, 36(2): 291-294 DOI: 10.13929/j.issn.1003-3289.2020.02.030.
[6]
A R, Qiao WJ, Sun XH, et al. CEST MR contrast agent for pH-sensitive imaging. Chin J Magn Reson Imaging, 2020, 11(8): 712-716. DOI: 10.12015/issn.1674-8034.2020.08.029.
[7]
Li L, Wang ZX, Fang JC, et al. Development and clinical application of new technology of chemical exchange saturation transfer derivation. Radiol Pract, 2020, 35(1): 2-8. DOI: 10.13609/j.cnki.1000-0313.2020.01.001.
[8]
Dou W, Lin CE, Ding H, et al. Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies[J]. Quant Imaging Med Surg, 2019, 9(10): 1747-1766. DOI: 10.21037/qims.2019.10.03.
[9]
Guermazi A, Alizai H, Crema MD, et al. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis[J]. Osteoarthritis Cartilage, 2015, 23(10): 1639-1653. DOI: 10.1016/j.joca.2015.05.026.
[10]
Madelin G, Xia D, Brown R, et al. Longitudinal study of sodium MRI of articular cartilage in patients with knee osteoarthritis: initial experience with 16-month follow-up[J]. Eur Radiol, 2018, 28(1): 133-142. DOI: 10.1007/s00330-017-4956-z.
[11]
Martin NT, Raya JG, Wessell DE, et al. Functional MRI for evaluation of hyaline cartilage extracelullar matrix, a physiopathological-based approach[J]. Br J Radiol, 2019, 92(1103): 20190443. DOI: 10.1259/bjr.20190443.
[12]
Yang JW, Shao HD, Zhu JQ, et al. The application of MR gag CEST in quantitative assessment of articular cartilage[J]. Int J Med Radiol, 2019, 42(2): 185-188, 226. DOI: 10.19300/j.2019.Z6388.
[13]
Koller U, Apprich S, Schmitt B, et al. Evaluating the cartilage adjacent to the site of repair surgery with glycosaminoglycan-specific magnetic resonance imaging[J]. Int Orthop, 2017, 41(5): 969-974. DOI: 10.1007/s00264-017-3434-1.
[14]
Schleich C, Bittersohl B, Miese F, et al. Glycosaminoglycan chemical exchange saturation transfer at 3T MRI in asymptomatic knee joints[J]. Acta Radiol, 2016, 57(5): 627-632. DOI: 10.1177/0284185115598811.
[15]
Schreiner MM, Zbyn S, Schmitt B, et al. Reproducibility and regional variations of an improved gagCEST protocol for the in vivo evaluation of knee cartilage at 7 T[J]. MAGMA, 2016, 29(3): 513-521. DOI: 10.1007/s10334-016-0544-5.
[16]
Looze CA, Capo J, Ryan MK, et al. Evaluation and management of osteochondral lesions of the talus[J]. Cartilage, 2017, 8(1): 19-30. DOI: 10.1177/1947603516670708.
[17]
Seo SG, Kim JS, Seo DK, et al. Osteochondral lesions of the talus[J]. Acta Orthop, 2018, 89(4): 462-467. DOI: 10.1080/17453674.2018.1460777.
[18]
Posadzy M, Desimpel J, Vanhoenacker F. Staging of osteochondral lesions of the talus: MRI and cone beam CT[J]. J Belg Soc Radiol, 2017, 101(Suppl 2): 1. DOI: 10.5334/jbr-btr.1377.
[19]
Pritsch M, Horoshovski H, Farine I. Arthroscopic treatment of osteochondral lesions of the talus[J]. J Bone Joint Surg Am, 1986, 68(6): 862-865.
[20]
Kogan F, Hargreaves BA, Gold GE. Volumetric multislice gagCEST imaging of articular cartilage: optimization and comparison with T1rho[J]. Magn Reson Med, 2017, 77(3): 1134-1141. DOI: 10.1002/mrm.26200.
[21]
Abrar DB, Schleich C, Radke KL, et al. Detection of early cartilage degeneration in the tibiotalar joint using 3 T gagCEST imaging: a feasibility study[J]. MAGMA, 2020, DOI: 10.1007/s10334-020-00868-y.
[22]
Krusche-Mandl I, Schmitt B, Zak L, et al. Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation[J]. Osteoarthritis Cartilage, 2012, 20(5): 357-363. DOI: 10.1016/j.joca.2912.01.020.
[23]
Saar G, Zhang B, Ling W, et al. Assessment of glycosaminoglycan concentration changes in the intervertebral disc via chemical exchange saturation transfer[J]. NMR Biomed, 2012, 25(2): 255-261. DOI: 10.1002/nbm.1741.
[24]
Urban JP, Winlove CP. Pathophysiology of the intervertebral disc and the challenges for MRI[J]. J Magn Reson Imaging, 2007, 25(2): 419-432. DOI: 10.1002/jmri.20874.
[25]
Wada T, Togao O, Tokunaga C, et al. Glycosaminoglycan chemical exchange saturation transfer in human lumbar intervertebral discs: Effect of saturation pulse and relationship with low back pain[J]. J Magn Reson Imaging, 2017, 45(3): 863-871. DOI: 10.1002/jmri.25397.
[26]
Schleich C, Muller-Lutz A, Eichner M, et al. Glycosaminoglycan chemical exchange saturation transfer of lumbar intervertebral discs in healthy volunteers[J]. Spine (Phila Pa 1976), 2016, 41(2): 146-152. DOI: 10.1097/BRS.0000000000001144.
[27]
Xiong X, Zhou Z, Figini M, et al. Multi-parameter evaluation of lumbar intervertebral disc degeneration using quantitative magnetic resonance imaging techniques[J]. Am J Transl Res, 2018, 10(2): 444-454.
[28]
Latz D, Frenken M, Schiffner E, et al. Assessment of glycosaminoglycan content in intervertebral discs of patients with leg length discrepancy: A pilot study[J]. J Orthop, 2019, 16(5): 363-367. DOI: 10.1016/j.jor.2019.03.014.
[29]
Pulickal T, Boos J, Konieczny M, et al. MRI identifies biochemical alterations of intervertebral discs in patients with low back pain and radiculopathy[J]. Eur Radiol, 2019, 29(12): 6443-6446. DOI: 10.1007/s00330-019-06305-6.
[30]
Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. Ⅲ. The steady state[J]. J Biol Chem, 1955, 217(1): 409-427.
[31]
Davies RE. A molecular theory of muscle contraction: calcium-dependent contractions with hydrogen bond formation plus ATP-dependent extensions of part of part of the myosin-actin cross-bridges[J]. Nature, 1963, 199: 1068-1074. DOI: 10.1038/1991068a0.
[32]
Bendahan D, Giannesini B, Cozzone PJ. Functional investigations of exercising muscle: a noninvasive magnetic resonance spectroscopy-magnetic resonance imaging approach[J]. Cell Mol Life Sci, 2004, 61(9): 1001-1015. DOI: 10.1007/s00018-004-3345-3.
[33]
Rerich E, Zaiss M, Korzowski A, et al. Relaxation-compensated CEST-MRI at 7 T for mapping of creatine content and pH--preliminary application in human muscle tissue in vivo[J]. NMR Biomed, 2015, 28(11): 1402-1412. DOI: 10.1002/nbm.3367.
[34]
Hoult DI, Busby SJ, Gadian DG, et al. Observation of tissue metabolites using 31P nuclear magnetic resonance[J]. Nature, 1974, 252(5481): 285-287. DOI: 10.1038/252285a0.
[35]
Dawson MJ, Gadian DG, Wilkie DR. Muscular fatigue investigated by phosphorus nuclear magnetic resonance[J]. Nature, 1978, 274(5674): 861-866. DOI: 10.1038/274861a0.
[36]
Ingwall JS. Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles[J]. Am J Physiol, 1982, 242(5): H729-H744. DOI: 10.1152/ajpheart.1982.242.5.H729.
[37]
Kemp GJ, Meyerspeer M, Moser E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review[J]. NMR Biomed, 2007, 20(6): 555-565. DOI: 10.1002/nbm.1192.
[38]
Bottomley PA, Lee Y, Weiss RG. Total creatine in muscle: imaging and quantification with proton MR spectroscopy[J]. Radiology, 1997, 204(2): 403-410. DOI: 10.1148/radiology.204.2.9240527.
[39]
Rico-Sanz J, Thomas EL, Jenkinson G, et al. Diversity in levels of intracellular total creatine and triglycerides in human skeletal muscles observed by (1) H-MRS[J]. J Appl Physiol (1985), 1999, 87(6): 2068-2072. DOI: 10.1152/jappl.1999.87.6.2068.
[40]
Sun PZ, Benner T, Kumar A, et al. Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3 T clinical scanner[J]. Magn Reson Med, 2008, 60(4): 834-841. DOI: 10.1002/mrm.21714.
[41]
Haris M, Nanga RP, Singh A, et al. Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI[J]. NMR Biomed, 2012, 25(11): 1305-1309. DOI: 10.1002/nbm.2792.
[42]
Kogan F, Haris M, Singh A, et al. Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer[J]. Magn Reson Med, 2014, 71(1): 164-172. DOI: 10.1002/mrm.24641.
[43]
Kogan F, Haris M, Debrosse C, et al. In vivo chemical exchange saturation transfer imaging of creatine (CrCEST) in skeletal muscle at 3 T[J]. J Magn Reson Imaging, 2014, 40(3): 596-602. DOI: 10.1002/jmri.24412.
[44]
Pavuluri K, Rosenberg JT, Helsper S, et al. Amplified detection of phosphocreatine and creatine after supplementation using CEST MRI at high and ultrahigh magnetic fields[J]. J Magn Reson, 2020, 313: 106703. DOI: 10.1006/j.jmr.2020.106703.
[45]
van Zijl PC, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn't?[J]. Magn Reson Med, 2011, 65(4): 927-948. DOI: 10.1002/mrm.22761.
[46]
Watkins LE, Rubin EB, Mazzoli V, et al. Rapid volumetric gagCEST imaging of knee articular cartilage at 3 T: evaluation of improved dynamic range and an osteoarthritic population[J]. NMR Biomed, 2020, 33(8): e4310. DOI: 10.1002/nbm.4310.
[47]
Song X, Gilad AA, Joel S, et al. CEST phase mapping using a length and offset varied saturation (LOVARS) scheme[J]. Magn Reson Med, 2012, 68(4): 1074-1086. DOI: 10.1002/mrm.23312.
[48]
Wei W, Jia G, Flanigan D, et al. Chemical exchange saturation transfer MR imaging of articular cartilage glycosaminoglycans at 3 T: Accuracy of B0 Field Inhomogeneity corrections with gradient echo method[J]. Magn Reson Imaging, 2014, 32(1): 41-47. DOI: 10.1016/j.mri.2013.07.009.
[49]
Heo HY, Xu X, Jiang S, et al. Prospective acceleration of parallel RF transmission-based 3D chemical exchange saturation transfer imaging with compressed sensing[J]. Magn Reson Med, 2019, 82(5): 1812-1821. DOI: 10.1002/mrm.27875.
[50]
Chen Z, Han Z, Liu G. Repurposing clinical agents for chemical exchange saturation transfer magnetic resonance imaging: current status and future perspectives[J]. Pharmaceuticals (Basel), 2020, 14(1): 14(1): 11. DOI: 10.3390/ph14010011.

PREV Research progress of multimodal MRI in renal cell carcinoma
NEXT Research progress in preoperative imaging evaluation of oblique lumbar interbody fusion
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn