Share:
Share this content in WeChat
X
Experience Exchanges
Study on the identification of schizophrenia patients with abnormal amplitude of resting low frequency oscillation
CAI Qiuyi  CHEN Yucan  LI Jianlin  ZHAO Zhengkai  WANG Yan 

Cite this article as: Cai QY, Chen YC, Li JL, et al. Study on the identification of schizophrenia patients with abnormal amplitude of resting low frequency oscillation[J]. Chin J Magn Reson Imaging, 2021, 12(10): 45-48. DOI:10.12015/issn.1674-8034.2021.10.010.


[Abstract] Objective To study the changes of brain function in patients with schizophrenia by using amplitude of low-frequency fluctuation (ALFF) index in resting-state functional magnetic resonance imaging (rs-fMRI). Materials andMethods Seventy-two schizophrenic patients and 75 normal controls were enrolled to analyze the difference of ALFF between the two groups. The machine learning algorithm was conducted to select the altered ALFF that could effectively identify schizophrenia patients with healthy controls.Results Patients with schizophrenia showed increased ALFF in the right fusiform gyrus, left inferior temporal gyrus and left medial superior frontal gyrus as well as decreased ALFF in left thalamus and right posterior central gyrus (GRF corrected, voxel P<0.001, cluster P<0.05). The altered ALFF in resting state could identify patients with schizophrenia.Conclusions Patients with schizophrenia have abnormal spontaneous brain activity compared with normal controls, which may be the candidate neurobiological markers of patients with schizophrenia.
[Keywords] schizophrenia;resting state;functional magnetic resonance imaging;amplitude of low-frequency amplitude;machine learning

CAI Qiuyi   CHEN Yucan*   LI Jianlin   ZHAO Zhengkai   WANG Yan  

Department of Radiology, Chengdu Third People's Hospital, Chengdu 610000, China

Chen YC, E-mail: miracle0833@163.com

Conflicts of interest   None.

Received  2021-04-08
Accepted  2021-07-06
DOI: 10.12015/issn.1674-8034.2021.10.010
Cite this article as: Cai QY, Chen YC, Li JL, et al. Study on the identification of schizophrenia patients with abnormal amplitude of resting low frequency oscillation[J]. Chin J Magn Reson Imaging, 2021, 12(10): 45-48. DOI:10.12015/issn.1674-8034.2021.10.010.

[1]
Tandon R, Gaebel W, Barch DM, et al. Definition and description of schizophrenia in the DSM-5[J]. Schizophr Res, 2013, 150(1): 3-10. DOI: 10.1016/j.schres.2013.05.028.
[2]
Gong JY, Wang JJ, Luo XM, et al. Abnormalities of intrinsic regional brain activity in first-episode and chronic schizophrenia: a meta-analysis of resting-state functional MRI[J]. J Psychiatry Neurosci, 2020, 45(1): 55-68. DOI: 10.1503/jpn.180245.
[3]
Zhao C, Zhu JJ, Liu XY, et al. Structural and functional brain abnormalities in schizophrenia: A cross-sectional study at different stages of the disease[J].Prog Neuropsychopharmacol Biol Psychiatry, 2018, 83: 27-32. DOI: 10.1016/j.pnpbp.2017.12.017.
[4]
Wang PS, Yang J, Yin ZY, et al. Amplitude of low-frequency fluctuation (ALFF) may be associated with cognitive impairment in schizophrenia: a correlation study[J]. BMC Psychiatry, 2019, 19(1): 30. DOI: 10.1186/s12888-018-1992-4.
[5]
Zarogianni E, Storkey AJ, Johnstone EC, et al. Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features[J].Schizophr Res, 2017, 181: 6-12. DOI: 10.1016/j.schres.2016.08.027.
[6]
Khosla M, Jamison K, Ngo GH, et al. Machine learning in resting-state fMRI analysis[J].Magn Reson Imaging, 2019, 64: 101-121. DOI: 10.1016/j.mri.2019.05.031.
[7]
Plaschke RN, Cieslik EC, Muller VI, et al. On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from connectivity-based single-subject classification[J]. Hum Brain Mapp, 2017, 38(12): 5845-5858. DOI: 10.1002/hbm.23763.
[8]
Zhuang HX, Liu RH, Wu CW, et al. Multimodal classification of drug-naive first-episode schizophrenia combining anatomical, diffusion and resting state functional resonance imaging[J]. Neurosci Lett, 2019, 705: 87-93. DOI: 10.1016/j.neulet.2019.04.039.
[9]
Satterthwaite TD, Wolf DH, Loughead J, et al. Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth[J].Neuroimage, 2012, 60(1): 623-632. DOI: 10.1016/j.neuroimage.2011.12.063.
[10]
Allen EA, Damaraju E, Plis SM, et al. Tracking whole-brain connectivity dynamics in the resting state[J].Cereb Cortex, 2014, 24(3): 663-676. DOI: 10.1093/cercor/bhs352.
[11]
Golland P, Fischl B. Permutation tests for classification: towards statistical significance in image-based studies[J]. Inf Process Med Imaging, 2003, 18: 330-341. DOI: 10.1007/978-3-540-45087-0_28.
[12]
Yang JH, Wright J, Huang TS, et al. Image super-resolution via sparse representation[J]. IEEE Trans Image Process, 2010, 19(11): 2861-2873. DOI: 10.1109/TIP.2010.2050625.
[13]
Maher S, Ekstrom T, Ongur D, et al. Functional disconnection between the visual cortex and right fusiform face area in schizophrenia[J]. Schizophr Res, 2019, 209: 72-79. DOI: 10.1016/j.schres.2019.05.016.
[14]
Kim NY, Lee SM, Erlendsdottir MC, et al. Discriminable spatial patterns of activation for faces and bodies in the fusiform gyrus[J]. Front Hum Neurosci, 2014, 8: 632. DOI: 10.3389/fnhum.2014.00632.
[15]
Sun JH, Maller JJ, Guo LT, et al. Superior temporal gyrus volume change in schizophrenia: a review on region of interest volumetric studies[J]. Brain Res Rev, 2009, 61(1): 14-32. DOI: 10.1016/j.brainresrev.2009.03.004.
[16]
Mennigen E, Jiang WH, Calhoun VD, et al. Positive and general psychopathology associated with specific gray matter reductions in inferior temporal regions in patients with schizophrenia[J]. Schizophr Res, 2019, 208: 242-249. DOI: 10.1016/j.schres.2019.02.010.
[17]
Mueller S, Wang DH, Pan RQ, et al. Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia[J]. JAMA Psychiatry, 2015, 72(6): 552-560. DOI: 10.1001/jamapsychiatry.2014.3176.
[18]
Kirino E, Tanaka S, Fukuta M, et al. Functional Connectivity of the Caudate in Schizophrenia Evaluated with Simultaneous Resting-State Functional MRI and Electroencephalography Recordings[J].Neuropsychobiology, 2019, 77(4): 165-175. DOI: 10.1159/000490429.
[19]
Zheng YJ, Wu C, Li JH, et al. Schizophrenia alters intra-network functional connectivity in the caudate for detecting speech under informational speech masking conditions[J]. BMC Psychiatry, 2018, 18(1): 90. DOI: 10.1186/s12888-018-1675-1.
[20]
Hosomi F, Yanagi M, Kawakubo Y, et al. Capturing spontaneous activity in the medial prefrontal cortex using near-infrared spectroscopy and its application to schizophrenia[J]. Sci Rep, 2019, 9(1): 5283. DOI: 10.1038/s41598-019-41739-4.
[21]
Raichle ME. The Brain's Default Mode Network[J].Annual Review of Neuroscience, 2015, 38(1): 433-447. DOI: 10.1146/annurev-neuro-071013-014030.
[22]
Kottaram A, Johnston LA, Cocchi L, et al. Brain network dynamics in schizophrenia: Reduced dynamism of the default mode network[J].Hum Brain Mapp, 2019, 40(7): 2212-2228. DOI: 10.1002/hbm.24519.
[23]
Fan FM, Tan YL, Wang ZR, et al. Functional fractionation of default mode network in first episode schizophrenia[J].Schizophr Res, 2019, 210: 115-121. DOI: 10.1016/j.schres.2019.05.038.
[24]
Fan FM, Tan SP, Huang JC, et al. Functional disconnection between subsystems of the default mode network in schizophrenia[J]. Psychol Med, 2020, 1-11. DOI: 10.1017/S003329172000416X.
[25]
Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology[J].Annu Rev Clin Psychol, 2012, 8: 49-76. DOI: 10.1146/annurev-clinpsy-032511-143049.
[26]
Pergola G, Selvaggi P, Trizio S, et al. The role of the thalamus in schizophrenia from a neuroimaging perspective[J]. Neurosci Biobehav Rev, 2015, 54: 57-75. DOI: 10.1016/j.neubiorev.2015.01.013.
[27]
Dorph-Petersen KA, Lewis DA. Postmortem structural studies of the thalamus in schizophrenia[J]. Schizophr Res, 2017, 180: 28-35. DOI: 10.1016/j.schres.2016.08.007.
[28]
Gong JN, Luo C, Li XK, et al. Evaluation of functional connectivity in subdivisions of the thalamus in schizophrenia[J].Br J Psychiatry, 2019, 214(5): 288-296. DOI: 10.1192/bjp.2018.299.
[29]
Yamamoto M, Kushima I, Suzuki R, et al. Aberrant functional connectivity between the thalamus and visual cortex is related to attentional impairment in schizophrenia[J]. Psychiatry Res Neuroimaging, 2018, 278: 35-41. DOI: 10.1016/j.pscychresns.2018.06.007.
[30]
NC A. The role of the thalamus in schizophrenia[J]. Can J Psychiatry, 1997, 42(1): 27-33.
[31]
Giraldo-Chica M, Rogers BP, Damon SM, et al. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia[J]. Biol Psychiatry, 2018, 83(6): 509-517. DOI: 10.1016/j.biopsych.2017.09.022.
[32]
Kropf E, Syan SK, Minuzzi L, et al. From anatomy to function: the role of the somatosensory cortex in emotional regulation[J]. Braz J Psychiatry, 2019, 41(3): 261-269. DOI: 10.1590/1516-4446-2018-0183.
[33]
Sheffield JM, Barch DM. Cognition and resting-state functional connectivity in schizophrenia[J]. Neurosci Biobehav Rev, 2016, 61: 108-120. DOI: 10.1016/j.neubiorev.2015.12.007.
[34]
Ji Y, Zhang X, Wang ZR, et al. Genes associated with gray matter volume alterations in schizophrenia[J]. Neuroimage, 2021, 225: 117526. DOI: 10.1016/j.neuroimage.2020.117526.

PREV Application value of intraoperative awakening combined with magnetic resonance neuronavigation system in brain tumor surgery in functional area
NEXT Image features of atypical teratoid/rhabdoid tumor of central nervous system in children
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn