Share:
Share this content in WeChat
X
Review
Imaging manifestations and research progress of sclerosing adenosis of breast
WU Qi  WANG Zhuo  KANG Jianyun  NING Ning  ZHANG Lina  LIU Ailian 

Cite this article as: Wu Q, Wang Z, KANG JY, et al. Imaging manifestations and research progress of sclerosing adenosis of breast[J]. Chin J Magn Reson Imaging, 2021, 12(10): 101-104. DOI:10.12015/issn.1674-8034.2021.10.026.


[Abstract] Sclerosing adenosis of the breast is a common benign proliferative disease in women. The imaging findings are similar to malignant lesions and the diagnosis is difficult, which often leads to unnecessary over treatment. This article mainly reviews the performance and application of mammography, ultrasound and magnetic resonance imaging technologies in breast sclerosing adenosis, aiming to improve the radiologists understanding of this disease.
[Keywords] breast;sclerosing adenosis;mammography;ultrasound;magnetic resonance imaging

WU Qi1   WANG Zhuo1   KANG Jianyun1   NING Ning2   ZHANG Lina1*   LIU Ailian1  

1 Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011,China

2 Zhongshan College of Dalian Medical University, Dalian 116011,China

Zhang LN, E-mail: zln201045@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Guiding Project of Natural Fund of Liaoning Science and Technology Plan (2019-ZD-0907); University-level Teaching Reform Research General Project of Dalian Medical University (DYLX21036).
Received  2021-05-20
Accepted  2021-06-23
DOI: 10.12015/issn.1674-8034.2021.10.026
Cite this article as: Wu Q, Wang Z, KANG JY, et al. Imaging manifestations and research progress of sclerosing adenosis of breast[J]. Chin J Magn Reson Imaging, 2021, 12(10): 101-104. DOI:10.12015/issn.1674-8034.2021.10.026.

[1]
Yu BH, Tang SX, Xu XL, et al. Breast carcinoma in sclerosing adenosis: a clinicopathological and immunophenotypical analysis on 206 lesions[J]. Clin Pathol, 2018, 71: 546-553. DOI: 10.1136/jclinpath-2017-204751.
[2]
Chen JJ, Wang Y, Xue JY, et al. A clinicopathological study of early-stage synchronous bilateral breast cancer: a retrospective evaluation and prospective validation of potential risk factors[J]. PLoSONE, 2014, 9(4): e95185. DOI: 10.1371/journal.pone.0095185.
[3]
Huang NS, Chen JJ, Xue JY, et al. Breast sclerosing adenosis and accompanying malignancies: a clinicopathological and imaging study in a chinese population[J]. Medicine (Baltimore), 2015, 94(49): e2298. DOI: 10.1097/MD.0000000000002298.
[4]
Cucci E, Santoro A, Gesu CD, et al. Sclerosing Adenosis of the Breast: Report of Two Cases and Review of the Literature[J]. Pol J Radiol,2015, 80: 122-127. DOI: 10.12659/PJR.892706.
[5]
Tan HN, Zhang HY, Lei ZD, et al. Radiological and clinical findings in sclerosing adenosis of the breast[J]. Medicine, 2019, 98(39): 1-8. DOI: 10.1097/MD.0000000000017061.
[6]
Chen YL, Chen JJ, Chang C, et al. Sclerosing adenosis: Ultrasonographic and mammographic findings and correlation with histopathology[J]. Mol Clin Oncol, 2017, 6(2): 157-162. DOI: 10.3892/mco.2016.1108.
[7]
Li YC, Liang W, Peng FH, et al. The study of the imaging features and pathological of breast sclerosing adenosis[J]. Chin J Magn Reson Imaging, 2018, 09(02): 133-138. DOI: 10.12015/issn.1674-8034.2018.02.011.
[8]
Wang LS, Zhang SJ, Li WB, et al. Imaging features and pathological basis of breast sclerosing adenosis[J]. J Pract Radiol, 2020, 36(3): 401-405. DOI: 10.3969/j.issn.1002-1671.2020.03.016.
[9]
Cao RL, Scaranelo AM. Magnetic resonance imaging of"pure"sclerosing adenosis of the breast with surgical pathology correlation[J]. Breast J, 2019, 25(1): 143-144. DOI: 10.1111/tbj.13178.
[10]
Xu WM, Chen WG, Liao X, et al. The mammography characteristic analysis and differential diagnosisof the adenosis of breast[J]. J Med Imaging, 2015, 25(9): 1596-1599.
[11]
Tan PS, Ali MA, Eriksson M, et al. Mammography features for early markers of aggressive breast cancer subtypes and tumor characteristics: A population-based cohort study[J]. Int J Cancer, 2021, 148(6): 1351-1359. DOI: 10.1002/ijc.33309.
[12]
Rong LM, Cao K, Min CM, et al. Improving the diagnostic accuracy of breast BI-RADS 4 microcalcification-only lesions using contrast-enhanced mammography[J]. Clin Breast Cancer, 2020. DOI: 10.1016/j.clbc.2020.10.011.
[13]
Rauch T, Rieger J, Pelzer G, et al. Discrimination Analysis of Breast Calcifications using XRay Dark-Field Radiography[J]. Med Phys, 2020, 47(4): 1813-1826. DOI: 10.1002/MP.14043.
[14]
Li Y, Ye ZX, Wu T, et al. Comparision of full-field digital mammography and dital breast tomosynthesis on assessment of the lesions in dense breast:a preliminary study[J]. Chin J Oneol, 2013, 35(1): 33-37. DOI: 10.3760/cma.j.issn.0253-3766.2013.01.007.
[15]
Alzaghal AA, DiPiro PJ. Applications of Advanced Breast Imaging Modalities[J]. Breast Cancer, 2018, 20(57): 1-10. DOI: 10.1007/s11912-018-0700-3.
[16]
Amir T, Ambinder EB, Harvey SC, et al. Benefits of digital breast tomosynthesis: A lesion-level analysis[J]. J Med Screen, 2020: 096914132097826. DOI: 10.1177/0969141320978267.
[17]
Vijapura C, Yang LM, Xiong JH, et al. Imaging Features of Nonmalignant and Malignant Architectural Distortion Detected by Tomosynthesis[J]. AJR Am J Roentgenol, 2018, 211(6): 1397-1404. DOI: 10.2214/AJR.18.19658.
[18]
Xing SS, Wei Y, Lu CH, et al. Diagnosis of breast architectural distortion with digital breast tomosynthesis[J]. Chin Med Imaging Technol, 2020, 36(7): 1031-1035. DOI: 10.13929/j.issn.1003-3289.2020.07.021.
[19]
Shao SH, Yao MH, Li X, et al. Conventional and contrast-enhanced ultrasound features in sclerosing adenosis and correlation with pathology[J]. Clin Hemorheol Microcirc, 2021, 77(2):173-181. DOI: 10.3233/CH-200943.
[20]
Wen H, Xiao JD, Zhou YQ, et al. Application of automated breast volume scanner and mammography in differentiation of small breast lesions with BI-RADS-US 4[J]. J Cent South Univ (Med Sci), 2018, 43(10): 1131-1136. DOI: 10.11817/j.issn.1672-7347.2018.10.014.
[21]
Ozturk E, Yucesoy C, Onal B, et al. Mammographic and Ultrasonographic Findings of Different Breast Adenosis Lesions[J]. J Belg Soc Radiol, 2015, 99(1): 21-27. DOI: 10.5334/jbr-btr.850.
[22]
Yao JJ, Zhan WW, Zhu Y, et al. Value of Ultrasound in diagnosing sclerosing adenosis of breast[J]. Chin J Med Ultrasound (Electronic Edition), 2014, 11(6): 456-460. DOI: 10.3877/cma.j.issn.1672-6448.2014.06.005.
[23]
Liu W, Li W, Li ZY, et al. Ultrasound characteristics of sclerosing adenosis mimicking breast carcinoma[J]. Breast Cancer Res Tr, 2020, 181(1): 127-134. DOI: 10.1007/s10549-020-05609-2.
[24]
Toprak N, Yokus A, Gunduz M, et al. Histopathology and elastography discordance in evaluation of breast lesions with acoustic radiation force impulse elastography[J]. Pol J Radiol, 2019, 84: e224-e233. DOI: 10.5114/pjr.2019.86852.
[25]
Nogueira L, Brandao S, Nunes RG, et al. Breast DWI at 3T: influence of the fatsuppression technique on image quality and diagnostic performance[J]. Clin Radiol, 2017, 70(3): 286-294. DOI: 10.1016/j.crad.2014.11.012.
[26]
Zhu D, Qian HS, Han HX, et al. MRI differential diagnosis of breast adenosis and breast ductal carcinoma with pathological correlation[J]. Chin J Magn Reson Imaging, 2017, 8(10): 753-759. DOI: 10.12015/issn.1674-8034.2017.10.007.
[27]
Zhang B, Yang D, Nie P, et al. MRI differential diagnosis of non-mass enhancement benign and malignant breast lesions[J]. Chin J Med Imaging Technol, 2019, 35(10): 1495-1498. DOI: 10.13929/j.1003-3289.201904054.
[28]
Gity M, Arabkheradmand A, Taheri E, et al. Magnetic Resonance Imaging Features of Adenosis in the Breast[J]. Breast Cancer, 2015, 18(2): 187-194. DOI: 10.4048/jbc.2015.18.2.187.
[29]
Oztekin PS, Tuncbilek I, Kosar P, et al. Nodular Sclerosing Adenosis Mimicking Malignancy in the Breast: Magnetic Resonance Imaging Findings[J].Breast J, 2011, 17(1): 95-97. DOI: 10.1111/j.1524-4741.2010.01022.x.
[30]
Fornasa F, Pinali L, Gasparini A, et al. Diffusion-weighted magnetic resonance imaging in focal breast lesions: analysis of 78 cases with pathological correlation[J]. Radiol Med, 2011, 116(2): 264-275. DOI: 10.1007/s11547-010-0602-4.
[31]
Cheng LQ, Bai YH, Zhang J, et al. Optimization of apparent diffusion coefficient measured by diffusion-weighted MRI for diagnosis of breast lesions presenting as mass and non-mass-like enhancement[J]. Tumor Biol, 2013, 34(3): 1537-1545. DOI: 10.1007/s13277-013-0682-6.
[32]
Wang LJ, Zheng C, Chen WT, et al. Multi-path synergic fusion deep neural network framework for breast mass classification using digital breast tomosynthesis[J]. Phys Med Biol, 2020, 65(23): 235045. DOI: 10.1088/1361-6560/abaeb7.
[33]
Xiao MS, Zhao CY, Zhu QL, et al. An investigation of the classfication accury of deep learning framework-based computer-aided diagnosis system in different pathological types of breast lesions[J]. J Thorac Dis, 2019, 11(12): 5023-5031. DOI: 10.21037/jtd.2019.12.10.
[34]
Choi JS, Han BK, Ko ES, et al. Effect of a Deep Learning Framework-Based Computer-Aided Diagnosis System on the Diagnostic Performance of Radiologists in Differentiating between Malignant and Benign Masses on Breast Ultrasonography[J]. Korean J Radiol, 2019, 20(5): 749-758. DOI: 10.3348/kjr.2018.0530.
[35]
Jing W, Gong J, Wang SP, et al. Application of MRI Radiomics-Based Machine Learning Model to Improve Contralateral BI-RADS 4 Lesion Assessment[J]. Front Oncol, 2020, 10(531476): 1-8. DOI: 10.3389/fonc.2020.531476.
[36]
Han S, Kang H, Jeong J, et al. A Deep Learning Framework for Supporting the Classification of Breast Lesions in Ultrasound images[J]. Phys Med Biol, 2017, 62(19): 7714-7728. DOI: 10.1088/1361-6560/aa82ec.
[37]
Axmacher JA, Bhatt AA, Hesley GK. Nodular sclerosing adenosis detected as focal uptake on molecular breast imaging[J]. J Radiol Case Rep, 2020, 15(8): 1211-1215. DOI: 10.1016/j.radcr.2020.04.008.

PREV Evaluation of right ventricular strains by cardiac magnetic resonance feature tracking
NEXT Research progress of radiomics in evaluation of curative effect of pancreatic cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn