Share:
Share this content in WeChat
X
Review
Research progress of MRI in differentiating Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma
WANG Xi  LI Hong 

Cite this article as: Wang X, Li H. Research progress of MRI in differentiating Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(10): 109-111. DOI:10.12015/issn.1674-8034.2021.10.028.


[Abstract] The treatment and prognosis of hepatocellular carcinoma and cholangiocarcinoma are very different, so it is of vital significance to accurately distinguish these two tumors before treatment. New MRI techniques such as diffusion-weighted imaging, radiomics, PET-MEI and magnetic resonance elastography can evaluate the tumors more comprehensively than traditional MRI and improve the accuracy. In this article, we reviewed the progress of MRI in distinguishing hepatocellular carcinoma and intrahepatic cholangiocarcinoma.
[Keywords] magnetic resonance imaging;hepatocellular carcinoma;intrahepatic cholangiocarcinoma;differential diagnosis

WANG Xi   LI Hong*  

Department of Radiology, Renhe Hospital affiliated to China Three Gorges University,Yichang 443001,China

Li H, E-mail: 1741433022@qq.com

Conflicts of interest   None.

Received  2021-04-22
Accepted  2021-05-28
DOI: 10.12015/issn.1674-8034.2021.10.028
Cite this article as: Wang X, Li H. Research progress of MRI in differentiating Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(10): 109-111. DOI:10.12015/issn.1674-8034.2021.10.028.

[1]
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953. DOI: 10.1002/ijc.31937.
[2]
Zhou MG, Wang HD, Zeng XY, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204): 1145-1158. DOI: 10.1016/S0140-6736(19)30427-1.
[3]
Choi SH, Lee SS, Kim SY, et al. Intrahepatic Cholangiocarcinoma in Patients with Cirrhosis: Differentiation from Hepatocellular Carcinoma by Using Gadoxetic Acid-enhanced MR Imaging and Dynamic CT[J]. Radiology, 2017, 282(3): 771-781. DOI: 10.1148/radiol.2016160639.
[4]
Ni T, Shang XS, Wang WT, et al. Different MR features for differentiation of intrahepatic mass-forming cholangiocarcinoma from hepatocellular carcinoma according to tumor size[J]. Br J Radiol, 2018, 91(1088): 20180017. DOI: 10.1259/bjr.20180017.
[5]
Huang B, Wu L, Lu XY, et al. Small Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma in Cirrhotic Livers May Share Similar Enhancement Patterns at Multiphase Dynamic MR Imaging[J]. Radiology, 2016, 281(1): 150-7. DOI: 10.1148/radiol.2016151205.
[6]
Park HJ, Jang KM, Kang TW, et al. Identification of Imaging Predictors Discriminating Different Primary Liver Tumours in Patients with Chronic Liver Disease on Gadoxetic Acid-enhanced MRI: a Classification Tree Analysis[J]. Eur J Radiol, 2016, 26(9): 3102-11. DOI: 10.1007/s00330-015-4136-y.
[7]
Wengert GJ, Baltzer PAT, Bickel H ,et al. Differentiation of Intrahepatic Cholangiocellular Carcinoma from Hepatocellular Carcinoma in the Cirrhotic Liver Using Contrast-enhanced MR Imaging[J]. Acad Radiol, 2017, 24(12): 1491-1500. DOI: 10.1016/j.acra.2017.06.005.
[8]
Xu J, Igarashi S, Sasaki M, et al. Intrahepatic cholangiocarcinomas in cirrhosis are hypervascular in comparison with those in normal livers[J]. Liver Int, 2012, 32(7): 1156-64. DOI: 10.1111/j.1478-3231.2012.02783.x.
[9]
Hwang J, Kim YK, Kim JM, et al. Pretransplant diagnosis of hepatocellular carcinoma by gadoxetic acid-enhanced and diffusion-weighted magnetic resonance imaging[J]. Liver Transplantation, 2014, 20(12): 1436-46. DOI: 10.1002/lt.23974.
[10]
Xie YH, Yu YQ, Qian YF, et al. The value of DWI in differentiating hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Clin Radiol, 2016, 35(06): 887-890. DOI: 10.13437/j.cnki.jcr.2016.06.017.
[11]
Wei Y, Gao FF, Zheng DD, et al. Intrahepatic cholangiocarcinoma in the setting of HBV-related cirrhosis: Differentiation with hepatocellular carcinoma by using Intravoxel incoherent motion diffusion-weighted MR imaging[J]. Oncotarget, 2017, 9(8): 7975-7983. DOI: 10.18632/oncotarget.23807.
[12]
Asayama Y, Nishie A, Ishigami K, et al. Distinguishing intrahepatic cholangiocarcinoma from poorly differentiated hepatocellular carcinoma using precontrast and gadoxetic acid-enhanced MRI[J]. Diagn Interv Radiol, 2015, 21(2): 96-104. DOI: 10.5152/dir.2014.13013.
[13]
Çelebi F, Yaghouti K, Cindil E, et al. The Role of 18F-FDG PET/MRI in the Assessment of Primary Intrahepatic Neoplasms[J]. Aca Radiol, 2021, 28(2): 189-198. DOI: 10.1016/j.acra.2020.01.026.
[14]
Lewis S, Peti S, Hectors SJ, et al. Volumetric quantitative histogram analysis using diffusion-weighted magnetic resonance imaging to differentiate HCC from other primary liver cancers[J]. Abdom Radiol (NY), 2019, 44(3): 912-922. DOI: 10.1007/s00261-019-01906-7.
[15]
Tian SS, Xu YS, Gao YL, et al. The value of histogram-based apparent diffusion coefficient in distinguishing hepatocellular carcinoma from intrahepatic cholangiocarcinoma[J]. Chin J Magn Reson Imaging, 2019, 10(07):514-518. DOI: 10.12015/issn.1674-8034.2019.07.007.
[16]
Zou XL, Luo Y, Tang H, et al. Value of volumetric apparent diffusion coefficient histogram analysis in the differential diagnosis between intrahepatic mass-forming cholangiocarcinoma and hepatocellular carcinoma[J]. Diagn Imaging and Inter Radiol, 2019, 28(03): 181-186. DOI: 10.3969/j.issn.1005-8001.2019.03.004.
[17]
Wei MY, Lü LS, Lin PY, et al. Multiple cellular origins and molecular evolution of intrahepatic cholangiocarcinoma[J]. Cancer Lett, 2016, 379(2): 253-61. DOI: 10.1016/j.canlet.2016.02.038.
[18]
Park MS, Kim S, Patel J, et al. Hepatocellular carcinoma: detection with diffusion-weighted versus contrast-enhanced magnetic resonance imaging in pretransplant patients[J]. Hepatology, 2012, 56(1): 140-148. DOI: 10.1002/hep.25681.
[19]
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
[20]
Choi IY, Lee SS, Sung YS, et al. Intravoxel incoherent motion diffusion-weighted imaging for characterizing focal hepatic lesions: Correlation with lesion enhancement[J]. J Magn Reson Imaging, 2017, 45(6): 1589-1598. DOI: 10.1002/jmri.25492.
[21]
Peng J, Zheng J, Yang C, et al. Intravoxel incoherent motion diffusion-weighted imaging to differentiate hepatocellular carcinoma from intrahepatic cholangiocarcinoma[J]. Scientific reports, 2020, 10(1): 7717. DOI: 10.1038/s41598-020-64804-9.
[22]
Wang QQ, Yin ZJ, Wang J, et al. Application of intravoxel incoherent motion diffusion weighted imaging based on iShim in identification of focal liver lesions[J]. Chin J Med Imaging, 2019, 27(12): 914-917+925. DOI: 10.3969/j.issn.1005-5185.2019.12.008.
[23]
Bennett KM, Schmainda KM, Bennett RT, et al. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model[J]. Journal of Magnetic Resonance Imaging, 2003, 504(4): 727-34. DOI: 10.1002/mrm.10581.
[24]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[25]
Zhang JH, Chen F, Xue X, et al. Support vector machine based MRI radiomics to identify primary hepatic carcinomas with different pathological types[J]. Chin J Radiol, 2018, 52(05): 333-337. DOI: 10.3760/cma.j.issn.1005-1201.2018.05.003.
[26]
Feng ZY, Ye J. Study on the identification of hepatocarcinoma and intrahepatic cholangiocarcinoma based on T2WI radiomics[J]. Clin Research and Practice, 2020, 5(22): 1-4. DOI: 10.19347/j.cnki.2096-1413.202022001.
[27]
Liu X, Khalvati F, Namdar K, et al. Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning?[J]. European Radiology, 2021, 31(1): 244-255. DOI: 10.1007/s00330-020-07119-7.
[28]
Okonkwo UC, Nwosu MN, Ukah C, et al. The clinical and pathological features of hepatocellular carcinoma in Nnewi, Nigeria[J]. Niger J Med, 2011, 20(3): 366-371.
[29]
Kong E, Chun KA, Cho IH. Quantitative assessment of simultaneous F-18 FDG PET/MRI in patients with various types of hepatic tumors: Correlation between glucose metabolism and apparent diffusion coefficient[J]. PLoS One, 2017, 12(7): e0180184. DOI: 10.1371/journal.pone.0180184.
[30]
Herholz K, Pietrzyk U, Voges J, et al. Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study[J]. J Neurosurg, 1993, 79(6): 853-858. DOI: 10.3171/jns.1993.79.6.0853.
[31]
Lim CH, Moon SH, Cho YS, et al. Prognostic value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with combined hepatocellular-cholangiocarcinoma[J]. Eur J Nucl Med Mol Imaging, 2019, 46(8): 1705-1712. DOI: 10.1007/s00259-019-04327-2.
[32]
Lee SM, Kim HS, Lee S, et al. Emerging role of 18F-fluorodeoxyglucose positron emission tomography for guiding management of hepatocellular carcinoma[J]. World J Gastroenterol, 2019, 25(11): 1289-1306. DOI: 10.3748/wjg.v25.i11.1289.
[33]
Yue QQ, Wang XY. Advances study of functional MRI imaging for the diagnosis of small hepatocellular carcinoma[J]. Chin J Digest Med Imageol (Elect Ed), 2016, 6(04): 180-183. DOI: 10.3877/cma.j.issn.2095-2015.2016.04.008.
[34]
Shahryari M, Tzschätzsch H, Guo J, et al. Tomoelastography Distinguishes Noninvasively between Benign and Malignant Liver Lesions[J]. Cancer Res, 2019, 79(22): 5704-5710. DOI: 10.1158/0008-5472.CAN-19-2150.

PREV Research progress of radiomics in evaluation of curative effect of pancreatic cancer
NEXT Progress of Gd-EOB-DTPA in the diagnosis and evaluation of CRLM
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn