Share:
Share this content in WeChat
X
Review
The advance of magnetic resonance imaging in early acute intestinal ischemia
CHEN Mengsha  HAN Huiting  WANG Xinyu  BA Chenghui  JIANG Xingyue 

Cite this article as: Chen MS, Han HT, Wang XY, et al. The advance of magnetic resonance imaging in early acute intestinal ischemia[J]. Chin J Magn Reson Imaging, 2021, 12(10): 115-117. DOI:10.12015/issn.1674-8034.2021.10.030.


[Abstract] acute intestinal ischemia is a disease in which ischemia and hypoxia in the intestinal wall eventually result in infarction. Since the early onset symptoms are not obvious and non-specific, the mortality rate of this disease has been maintained at 50%-70%. It is very important for the survival of patients to determine the severity of ischemia in early stage and give treatment. With the continuous development of imaging technology, computer tomography (CT), ultrasound and digital subtraction angiography (DSA) have played an important role in the diagnosis of intestinal ischemia. In recent years, magnetic resonance imaging has developed rapidly. With the application of various new techniques and high resolution imaging, magnetic resonance examination is of great significance in displaying the ischemic intestinal wall and quantitatively evaluating the severity of ischemia. This article mainly reviews the progress of diffusion weighted imaging, contrast-enhanced imaging, molecular imaging, quantitative blood flow imaging and quantitative blood oxygen imaging in the evaluation of acute intestinal ischemia.
[Keywords] magnetic resonance imaging;acute intestinal ischemia;diffusion-weighted imaging;contrast agents;molecular imaging;quantitative imaging

CHEN Mengsha1   HAN Huiting1   WANG Xinyu1   BA Chenghui1   JIANG Xingyue2*  

1 Binzhou Medical University, Binzhou 256600, China

2 Affiliated Hospital of Binzhou Medical University, Binzhou 256600, China

nce to: Jiang XY, E-mail: xyjiang188@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Shandong Province (NO. ZR2018LH015).
Received  2021-05-15
Accepted  2021-07-12
DOI: 10.12015/issn.1674-8034.2021.10.030
Cite this article as: Chen MS, Han HT, Wang XY, et al. The advance of magnetic resonance imaging in early acute intestinal ischemia[J]. Chin J Magn Reson Imaging, 2021, 12(10): 115-117. DOI:10.12015/issn.1674-8034.2021.10.030.

[1]
Bala M, Kashuk J, Moore EE, et al. Acute mesenteric ischemia: guidelines of the World Society of Emergency Surgery[J]. World J Emerg Surg, 2017, 12: 38. DOI: 10.1186/s13017-017-0150-5.
[2]
Klar E, Rahmanian PB, Bucker A, et al. Acute mesenteric ischemia: a vascular emergency[J]. Dtsch Arztebl Int, 2012, 109(14): 249-256. DOI: 10.3238/arztebl.2012.0249.
[3]
Al-Diery H, Phillips A, Evennett N, et al. The Pathogenesis of Nonocclusive Mesenteric Ischemia: Implications for Research and Clinical Practice[J]. J Intensive Care Med, 2019, 34(10): 771-781. DOI: 10.1177/0885066618788827.
[4]
Yuan L, Chen KT. The advance in early imaging studies of acute intestinal ischemia[J]. Med Rec, 2019, 25(11): 2258-2262. DOI: 10.3969/j.issn.1006-2084.2019.11.034.
[5]
Olson MC, Navin PJ, Welle CL, et al. Small bowel radiology[J]. Curr Opin Gastroenterol, 2021, 37(3): 267-274. DOI: 10.1097/MOG.0000000000000719.
[6]
Zeng XT, Xu Z, Ling XF. The research progress in early diagnosis of acute ischemic bowel disease[J]. Chin J curr adv gen surg, 2007, 10(5): 438-441. DOI: 10.3969/j.issn.1009-9905.2007.05.020.
[7]
Chow LC, Chan FP, Li KC. A comprehensive approach to MR imaging of mesenteric ischemia[J]. Abdom Imaging, 2002, 27(5): 507-516. DOI: 10.1007/s00261-001-0077-9.
[8]
Li JJ. Experimental study of intestinal wall structure and ischemia in small intestine by magnetic resonance imaging[D]. Huazhong University of Science and Technology, 2012.
[9]
Berritto D, Iacobellis F, Belfiore MP, et al. Early MRI findings of small bowel obstruction: an experimental study in rats[J]. Radiol Med, 2014, 119(6): 377-383. DOI: 10.1007/s11547-013-0370-z.
[10]
Inoue A, Nitta N, Ota S, et al. MR Imaging-based Evaluation of Mesenteric Ischemia Caused by Strangulated Small Bowel Obstruction and Mesenteric Venous Occlusion: An Experimental Study Using Rabbits[J]. Magn Reson Med Sci, 2020, 19(2): 125-134. DOI: 10.2463/mrms.mp.2019-0010.
[11]
Berritto D, Somma F, Landi N, et al. Seven-Tesla micro-MRI in early detection of acute arterial ischaemia: evolution of findings in an in vivo rat model[J]. Radiol Med, 2011, 116(6): 829-841. DOI: 10.1007/s11547-011-0676-7.
[12]
Yuan L. Evaluation of multi-B value DWI on ischemic necrosis of intestinal wall in rabbits with acute superior mesenteric artery occlusion[D]. Zunyi Medical University, 2019.
[13]
Takahara T, Kwee TC, Sadahiro S, et al. Low b-value diffusion-weighted imaging for diagnosing strangulated small bowel obstruction: A feasibility study[J]. J Magn Reson Imaging, 2011, 34(5): 1117-1124. DOI: 10.1002/jmri.22735.
[14]
Bruhn RS, Distelmaier MS, Hellmann-Sokolis M, et al. Early Detection of Acute Mesenteric Ischemia Using Diffusion-Weighted 3.0-T Magnetic Resonance Imaging in a Porcine Model[J]. Invest Radiol, 2013, 48: 231-237. DOI: 10.1097/rli.0b013e3182809143.
[15]
Schwartz C, Haage P. Hohl C. Experimentelle Frühdiagnostik der akuten mesenterialen Ischämie mittels diffusionsgewichteter MRT (DWI) und paralleler Bildgebung[J]. FortschrRöntgenstr, 2012, 184(06): 520-526. DOI: 10.1055/s-0031-1299414.
[16]
Hectors SJ, Gordic S, Semaan S, et al. Diffusion and perfusion MRI quantification in ileal Crohn's disease[J]. Eur Radiol, 2019, 29(2): 993-1002. DOI: 10.1007/s00330-018-5627-4.
[17]
Yang JX, Meng MZ, Pan CJ, et al. Intravoxel Incoherent Motion and Dynamic Contrast-Enhanced Magnetic Resonance Imaging to Early Detect Tissue Injury and Microcirculation Alteration in Hepatic Injury Induced by Intestinal Ischemia-Reperfusion in a Rat Model[J]. J Magn Reson Imaging, 2021, DOI: 10.1002/jmri.27604.
[18]
Kim MY, Suh CH, Kim ST, et al. Magnetic Resonance Imaging of Bowel Ischemia Induced by Ligation of Superior Mesenteric Artery and Vein in a Cat Model[J]. J Comput Assist Tomogr, 2004, 28(2): 187-192. DOI: 10.1097/00004728-200403000-00006.
[19]
Zhao DW, Cheng C, Kuang LQ, et al. A New Approach Using Manganese-Enhanced MRI to Diagnose Acute Mesenteric Ischemia in a Rabbit Model: Initial Experience[J]. Biomed Res Int, 2015, 2015: 579639. DOI: 10.1155/2015/579639.
[20]
Hahnemann ML, Kraff O, Orzada S, et al. T1-Weighted Contrast-Enhanced Magnetic Resonance Imaging of the Small Bowel Comparison Between 1.5 and 7 T[J]. Invest Radiol, 2015, 50(8): 539-547. DOI: 10.1097/rli.0000000000000161.
[21]
Ma XH, Wang S, Hu LB, et al. Imaging Characteristics of USPIO Nanoparticles (<5 nm) as MR Contrast Agent In Vitro and in the Liver of Rats[J]. Contrast Media Mol Imaging, 2019, 2019: 3687537. DOI: 10.1155/2019/3687537.
[22]
Huang J, Shu Q, Wang LY, et al. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine[J]. Biomaterials, 2015:105-113. DOI: 10.1016/j.biomaterials.2014.10.059.
[23]
Qin JB, Li KG, Peng C, et al. MRI of iron oxide nanoparticle-labeled ADSCs in a model of hindlimb ischemia[J]. Biomaterials, 2013, 34(21): 4914-4925. DOI: 10.1016/j.biomaterials.2013.03.014.
[24]
Morgan A, Zheng A, Linden KM, et al. Locally Transplanted Adipose Stem Cells Reduce Anastomotic Leaks in Ischemic Colorectal Anastomoses: A Rat Model[J]. Dis Colon Rectum, 2020, 63: 955-964. DOI: 10.1097/DCR.0000000000001667.
[25]
Darwesh AY, El-Dahhan MS, Meshali MM. New Oral Coaxial Nanofibers for Gadodiamide-Prospective Intestinal Magnetic Resonance Imaging and Theranostic[J]. Int J Nanomedicine, 2020, 15: 8933-8943. DOI: 10.2147/IJN.S281158.
[26]
Sasaki H, Inoue Y, Watanabe Y, et al. Quantification of Mesenteric Blood Flow by Magnetic Resonance Flow Imaging in Patients with Arterial Dissection[J]. Ann Vasc Dis, 2019, 12(2): 246-249. DOI: 10.3400/avd.cr.18-00161.
[27]
Collins JD. MR Imaging of the Mesenteric Vasculature[J]. Radiol Clin N Am, 2020, 58(4): 797-813. DOI: 10.1016/j.rcl.2020.03.001.
[28]
Sugiyama M, Takehara Y, Kawate M, et al. Optimal Plane Selection for Measuring Post-prandial Blood Flow Increase within the Superior Mesenteric Artery: Analysis Using 4D Flow and Computational Fluid Dynamics[J]. Magn Reson Med Sci, 2020, 19(4): 366-374. DOI: 10.2463/mrms.mp.2019-0089.
[29]
Dyvorne H, Jajamovich G, Besa C, et al. abdominal 4D Flow MR imaging in a Breath hold: Combination of Spiral Sampling and Dynamic Compressed Sensing for Highly Accelerated Acquisition[J]. Radiology, 2015, 275. DOI: 10.1148/radiol.14140973.
[30]
Roldán-Alzate A, Francois CJ, Wieben O, et al. Emerging Applications of Abdominal 4D Flow MRI[J]. HHS Public Access, 2016, 207(1): 58-66. DOI: 10.2214/AJR.15.15995.
[31]
Siedek F, Giese D, Weiss K, et al. 4D flow MRI for the analysis of celiac trunk and mesenteric artery stenoses[J]. Magn Reson Imaging, 2018, 53: 52-62. DOI: 10.1016/j.mri.2018.06.021.
[32]
Saini BS, Portnoy S, Sun L, et al. Normal human and sheep fetal vessel oxygen saturations by T2 magnetic resonance imaging[J]. J Physiol, 2020, 598(15): 3259-3281. DOI: 10.1113/JP279725.
[33]
Langham MC, Floyd TF, Mohler ER, et al. Evaluation of cuff-induced ischemia in the lower extremity by magnetic resonance oximetry[J]. J Am Coll Cardiol, 2010, 55(6): 598-606. DOI: 10.1016/j.jacc.2009.08.068.
[34]
Varghese J, Potter LC, LaFountain R, et al. CMR-based blood oximetry via multi-parametric estimation using multiple T2 measurements[J]. J Cardiovasc Magn Reson, 2017, 19(1): 88. DOI: 10.1186/s12968-017-0403-1.
[35]
Varghese J, Smyke M, Pan Y, et al. Patient-Adaptive Magnetic Resonance Oximetry: Comparison With Invasive Catheter Measurement of Blood Oxygen Saturation in Patients With Cardiovascular Disease[J]. J Magn Reson Imaging, 2020, 52(5): 1449-1459. DOI: 10.1002/jmri.27179.

PREV Progress of Gd-EOB-DTPA in the diagnosis and evaluation of CRLM
NEXT Research progress of amidine proton transfer imaging in genitourinary system disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn