Share:
Share this content in WeChat
X
Review
Research progress of amidine proton transfer imaging in genitourinary system disease
KONG Yaqing  QU Qianqian  MING Lei  WANG Zhe  DENG Kai 

Cite this article as: Kong YQ, Qu QQ, Ming L, et al. Research progress of amidine proton transfer imaging in genitourinary system disease[J]. Chin J Magn Reson Imaging, 2021, 12(10): 118-120. DOI:10.12015/issn.1674-8034.2021.10.031.


[Abstract] Amide proton transfer (APT) imaging is a new magnetic resonance molecular imaging technique. It is a branch of chemical exchange saturation transfer imaging, which reflects the changes of intracellular protein concentration and pH value by detecting the proton-water exchange rate of amide protons in tissues. In this paper, the applications of APT imaging in genitourinary diseases are reviewed.
[Keywords] amide proton transfer imaging;magnetic resonance imaging;prostate cancer;endometrial cancer;cervical cancer

KONG Yaqing1, 2   QU Qianqian2   MING Lei2   WANG Zhe2   DENG Kai2*  

1 Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 271016, China

2 Department of Radiology, the first affiliated Hospital of Shandong First Medical University (Shandong QianFoshan Hospital), Jinan 250014, China

Deng K, E-mail: 289954749@qq.com

Conflicts of interest   None.

Received  2021-05-07
Accepted  2021-07-05
DOI: 10.12015/issn.1674-8034.2021.10.031
Cite this article as: Kong YQ, Qu QQ, Ming L, et al. Research progress of amidine proton transfer imaging in genitourinary system disease[J]. Chin J Magn Reson Imaging, 2021, 12(10): 118-120. DOI:10.12015/issn.1674-8034.2021.10.031.

[1]
Forsen S, Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance[J].Journal of Chemical Physics, 1963, 39(11): 2892-2901. DOI: 10.1063/1.1734121.
[2]
Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer(CEST)[J]. J Magn Reson, 2000, 143(1):79-87. DOI: 10.1006/jmre.1999.1956.
[3]
Jokivarsi KT, Grohn HI, Grohn OH, et al. Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia[J]. Magn Reson Med, 2007, 57(4): 647-653. DOI: 10.1002/mrm.21181.
[4]
Sun PZ, Xiao G, Zhou IY, et al. A method for accurate pH mapping with chemical exchange saturation transfer (CEST) MRI[J]. Contrast Media Mol Imaging, 2016, 11(3): 195-202. DOI: 10.1002/cmmi.1680.
[5]
Lin Y, Li CM, Chen M. Progress in the application of amide proton transfer imaging[J]. Chin J Radiol Pract, 2018, 33(5): 525-528. DOI: 10.13609/j.cnki.i000-0313.2018.05.018.
[6]
Chatterjee A, He D, Fan X, et al. Performance of Ultrafast DCE-MRI for Diagnosis of Prostate Cancer[J]. Acad Radiol, 2018, 25(3):349-358. DOI: 10.1016/j.acra.2017.10.004.
[7]
Caglic I, Barrett T. Diffusion-weighted imaging (DWI) in lymph node staging for prostate cancer[J]. Transl Androl Urol, 2018, 7(5): 814-823. DOI: 10.21037/tau.2018.08.04.
[8]
Sharma U, Jagannathan NR. Metabolism of prostate cancer by magnetic resonance spectroscopy (MRS)[J]. Biophys Rev, 2020, 12(5): 1163-1173. DOI: 10.1007/s12551-020-00758-6.
[9]
Korkmaz CG, Korkmaz KS, Kurys P, et al. Molecular cloning and characterization of STAMP2, an androgen-regulated six transmembrane protein that is over expressed in prostate cancer[J]. Oncogene, 2005, 24(31): 4934-4945. DOI: 10.1038/sj.onc.1208677.
[10]
Yang G, Truong LD, Wheeler TM, et al. Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker[J]. Cancer Res, 1999, 59(22): 5719-5723.
[11]
Jia G, Abaza R, Williams JD, et al. Amide proton transfer MR imaging of prostate cancer: a preliminary study[J]. J Magn Reson Imaging, 2011, 33(3): 647-654. DOI: 10.1002/jmri.22480.
[12]
Meng N, Wang X, Sun J, et al. Application of the amide proton transfer-weighted imaging and diffusion kurtosis imaging in the study of cervical cancer[J]. Eur Radiol, 2020, 30(10): 5758-5767. DOI: 10.1007/s00330-020-06884-9.
[13]
Argüello-Ramírez J, Pérez-Cárdenas E, Delgado-Chávez R, et al. Matrix metalloproteinases-2, -3, and -9 secreted by explants of benign and malignant lesions of the uterine cervix[J]. Int J Gynecol Cancer, 2004, 14(2): 333-340. DOI: 10.1111/j.1048-891x.2004.014218.x.
[14]
He YL, Li Y, Lin CY, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted MRI for cervical cancer: a preliminary study[J]. J Magn Reson Med, 2019, 50(4): 1318-1325. DOI: 10.1002/jmri.26710.
[15]
Li BB, Sun HZ, Zhang SY, et al. Amide proton transfer imaging to evaluate the grading of squamous cell carcinoma of the cervix: A comparative study using 18F FDG PET[J]. J Magn Reson Imaging, 2019, 50(1): 261-268. DOI: 10.1002/jmri.26572.
[16]
Li Y, Lin CY, Qi YF, et al. Non-invasive Differentiation of Endometrial Adenocarcinoma from Benign Lesions in the Uterus by Utilization of Amide Proton Transfer-Weighted MRI[J]. Mol Imaging Biol, 2021, 23(3): 446-455. DOI: 10.1007/s11307-020-01565-x.
[17]
Takayama Y, Nishie A, Togao O, et al. Amide proton transfer MR imaging of endometrioid endometrial adenocarcinoma:association with histologic grade[J]. Radiology, 2018, 286(3): 909-917. DOI: 10.1148/radiol.2017170349.
[18]
Su C,Liu C,Zhao L,et a1. Amide proton transfer imaging allows detection of glioma grades and tumor proliferation:comparison with Ki-67 expression and proton MR spectroscopy imaging[J]. AJNR Am J Neuroradiol, 2017, 38(9): 1702-1709. DOI: 10.3174/ajnr.A5301.
[19]
Nishie A, Takayama Y, Asayama Y, et al. Amide proton transfer imaging can predict tumor grade in rectal cancer[J]. Magn Reson Imaging, 2018, 51: 96-103. DOI: 10.1016/j.mri.2018.04.017.
[20]
Tang Y, Dundamadappa SK, Thangasamy S,et al. Correlation of apparent diffusion coefficient with Ki-67 proliferation index in grading meningioma[J]. AJR Am J Roentgenol, 2014, 202(6): 1303-1308. DOI: 10.2214/AJR.13.11637.
[21]
Whittaker CS, Coady A, Culver L, et al.Diffusion-weighted MR imaging of female pelvic tumors: a pictorial review[J]. Radiographics, 2009, 29(3): 759-778. DOI: 10.1148/rg.293085130.
[22]
Suzuki A, Maeda T, Baba Y, et al. Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model[J]. Cancer cell international, 2014, 14(1): 129. DOI: 10.1186/s12935-014-0129-1.
[23]
Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades[J]. Neuro Oncol, 2014, 16(3): 441-448. DOI: 10.1093/neuonc/not158.
[24]
Togao O, Hiwatashi A, Yamashita K, et al. Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging[J]. Eur Radiol, 2017, 27(2): 578-588. DOI: 10.1007/s00330-016-4328-0.
[25]
Struble J, Reid S, Bedaiwy MA. Adenomyosis: A Clinical Review of a Challenging Gynecologic Condition[J]. J Minim Invasive Gynecol, 2016, 23(2): 164-185. DOI: 10.1016/j.jmig.2015.09.018.
[26]
Leyendecker G, Wildt L, Mall G. The pathophysiology of endometriosis and adenomyosis: tissue injury and repair[J]. Arch Gynecol Obstet, 2009, 280(4): 529-538. DOI: 10.1007/s00404-009-1191-0.
[27]
Morelli M,Rocca ML,Venturella R,et a1. Improvement in chronic pelvic pain after gonadotropin releasing hormone analogue (GnRH-a) administration in premenopausal women suffering from adenomyosis or endometriosis:a retrospective study[J]. Gynecol Endocrinol, 2013, 29(4): 305-308. DOI: 10.3109/09513590.2012.743017.
[28]
Lin CY. Multiparameter quantitative magnetic resonance imaging study of adenomyosis[D]. Chinese Academy of Medical Sciences, 2018. DOI: 10.7666/d.Y3517503.
[29]
Zhang SY, Sun HZ, Li BB, et al. Variation of amide proton transfer signal intensity and apparent diffusion coefficient values among phases of the menstrual cycle in the normal uterus: A preliminary study[J]. Magn Reson Imaging, 2019, 63: 21-28. DOI: 10.1016/j.mri.2019.07.007.
[30]
Huang HY, Chan SH, Yu HT, et al. Interleukin-18 system messenger RNA and protein expression in human endometrium during the menstrual cycle[J]. Fertil Steril, 2006, 86(4): 905-913. DOI: 10.1016/j.fertnstert.2006.02.122.
[31]
Baek WK, Kim D, Jung N, et al. Increased expression of cyclin G1 in leiomyoma compared with normal myometrium[J]. Am J Obstet Gynecol,2003, 188(3): 634-639. DOI: 10.1067/mob.2003.140.
[32]
Scoutt LM, Flynn SD, Luthringer DJ, et al. Junctional zone of the uterus: correlation of MR imaging and histologic examination of hysterectomy specimens[J]. Radiology, 1991, 179(2): 403-407. DOI: 10.1148/radiology.179.2.2014282.
[33]
Ishimatsu K, Nishie A, Takayama Y, et al. Amide proton transfer imaging for differentiating benign ovarian cystic lesions: Potential of first time right[J]. European Journal of Radiology, 2019, 120: 108656. DOI: 10.1016/j.ejrad.2019.108656.
[34]
Zou TY, Yu H, Jiang CX, et al. Differentiating the histologic grades of gliomas preoperatively using amide proton transfer-weighted (APTW) and intravoxel incoherent motion MRI[J]. NMR Biomed, 2018, 31(1): 10.1002/nbm.3850. DOI: 10.1002/nbm.3850.
[35]
Zhang JX, Zhu WZ, Tain RW, et al. Improved Differentiation of Low-Grade and High-Grade Gliomas and Detection of Tumor Proliferation Using APT Contrast Fitted from Z-Spectrum[J]. Mol Imaging Biol, 2018, 20(4): 623-631. DOI: 10.1007/s11307-017-1154-y.
[36]
Oh JH, Choi BG, Rhee HY, et al. Added Value of Chemical Exchange-Dependent Saturation Transfer MRI for the Diagnosis of Dementia[J]. Korean J Radiol, 2021,22(5): 770-781. DOI: 10.3348/kjr.2020.0700.
[37]
Zhang ZW, Zhang CQ, Yao J, et al. Protein-based amide proton transfer-weighted MR imaging of amnestic mild cognitive impairment[J]. Neuroimage Clin, 2020, 25: 102153. DOI: 10.1016/j.nicl.2019.102153.
[38]
Jiang SS, Rui QH, Wang Y, et al. Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics[J]. Eur Radiol, 2018, 28(5): 2115-2123. DOI: 10.1007/s00330-017-5182-4.

PREV The advance of magnetic resonance imaging in early acute intestinal ischemia
NEXT MR diffusion weighted imaging:Application in soft tissue tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn