Share:
Share this content in WeChat
X
Clinical Article
Multiparametric MRI radiomics signature for prediction of KRAS gene mutation in rectal cancer
TANG Xue  PENG Yongjia  CHEN Yaxi  GONG Jingshan  ZHU Jin  LUO Yan  JIANG Changsi 

Cite this article as: Tang X, Peng YJ, Chen YX, et al. Multiparametric MRI radiomics signature for prediction of KRAS gene mutation in rectal cancer[J]. Chin J Magn Reson Imaging, 2021, 12(11): 31-36. DOI:10.12015/issn.1674-8034.2021.11.007.


[Abstract] Objective To explore the value of multiparametric MRI imaging omics signal model to predict KRAS gene mutation in rectal cancer (RC).Methods and Materials: The clinicopathological data and the multi-parameter MRI imaging features of 104 patients with histopathological proven RC and preoperative MRI were retrospective recruited from Apr. 2019 to Dec. 2020. The association of clinicopathological characteristics and radiomics features with KRAS gene were evaluated using t test, χ2 test or Mann-Whitney U test. Least absolute shrinkage and selection operator (LASSO) regression was harnessed for radiomics features selection and radiomics signature building. Prediction performance of radiomics signature for KRAS gene mutation was assessed by using area under the curve (AUC) of receiver operating characteristic (ROC).Results The associations of clinicopathological characteristics and KRAS gene mutation were not statistical significant. Univaraite analysis revealed that 16 of the 321 radiomics features were related to KRAS mutation. LASSO regression selected 7 features for radiomics signature building. The radiomics signature yielded AUC of 0.81 (95% CI: 0.70—0.92) and 0.77 (95% CI: 0.63—0.91,P=0.60) for predicting KRAS mutation in training and validation sets,among them,the maximum λ coefficiences of the first-order skewness in the ADC feature is 3.36.Conclusions MRI radiomics signature could be used as surrogate biomarker for predicting KRAS mutation in RC, among them, the first-order skewnes of ADC features has the best predictive performance.
[Keywords] rectal cancer;KRAS gene;magnetic resonance imaging;radiomics;predictive performance

TANG Xue   PENG Yongjia   CHEN Yaxi   GONG Jingshan*   ZHU Jin   LUO Yan   JIANG Changsi  

Department of Radiology, the Second Clinical Medical College of Jinan University and the First Affiliated Hospital of Southern University of Science and Technology Shenzhen People's Hospital, Shenzhen 518020, China

Gong JS, E-mail: jshgong@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This study was supported by Shenzhen Science and Technology Program (No. JCYJ20180301170121400).
Received  2021-05-20
Accepted  2021-07-13
DOI: 10.12015/issn.1674-8034.2021.11.007
Cite this article as: Tang X, Peng YJ, Chen YX, et al. Multiparametric MRI radiomics signature for prediction of KRAS gene mutation in rectal cancer[J]. Chin J Magn Reson Imaging, 2021, 12(11): 31-36. DOI:10.12015/issn.1674-8034.2021.11.007.

[1]
Siegel RL, Miller KD, Jemal A, et al. Cancer Statistics, 2017[J]. Ca Cancer J Clin2017, 67: 7-30. DOI: 10.3322/caac.21387.
[2]
Bokemeyer C, Van Cutsem E, Rougier P, et a1. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials[J]. Eur J Cancer, 2012, 48(10): 1466-1475. DOI: 10.1016/j.ejca.2012.02.057.
[3]
Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer[J]. N Engl J Med, 2008, 23, 359(17): 1757-1765. DOI: 10.1056/NEJMoa0804385.
[4]
Amado RG1, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer[J]. J Clin Oncol, 2008, 26(10): 1626-1634. DOI: 10.1200/JCO.2007.14.7116.
[5]
Peeters M, Price TJ, Cervantes A, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer[J]. J Clin Oncol, 2010, 28(31): 4706-4713. DOI: 10.1200/JCO.2009.27.6055.
[6]
Liang C, Huang Y, He L, et al. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer[J]. Oncotarget, 2016, 7(21): 31401-31412. DOI: 10.18632/oncotarget.8919.
[7]
Gillies RJ, Kinahan PE, Hricak H, et al. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-77. DOI: 10.1148/radiol.2015151169.
[8]
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[9]
Huang YQ, Liang CH, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of Lymph node metastasis in colorectal cancer[J]. J Clin Oncol, 2016, 34(18): 2157-64. DOI: 10.1200/JCO.2015.65.9128.
[10]
Liu Z, Zhang XY, Shi YJ, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Clin Cancer Res, 2017, 23(23): 7253-7262. DOI: 10.1158/1078-0432.CCR-17-1038.
[11]
Liu Z, Li Z, Qu J, et al. Radiomics of multiparametric mri for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[12]
Xu Y, Xu Q, Sun H, et al. Could IVIM and ADC help in predicting the KRAS status in patients with rectal cancer?[J]. Eur Radiol, 2018, 28: 3059-65. DOI: 10.1007/s00330-018-5329-y.
[13]
Yeo DM, Oh SN, Choi MH, et al. Histogram analysis of perfusion parameters from dynamic contrast-enhanced MR imaging with tumor characteristics and therapeutic response in locally sdvanced tectal vancer[J]. Biomed Res Int, 2018, 2018: 3724393. DOI: 10.1155/2018/3724393.
[14]
Jiang XQ, Yan CC, Zhou ZY. Study on the correlation between MRI features and KRAS status of rectal cancers before operation[J]. Chin J Magn Reaon Imaging, 2020, 11(11): 1004-1009. DOI: 10.12015/issn.1674-8034.2020.11.010.
[15]
Xu Y, Xu Q, Ma Y, et al. Characterizing MRI features of rectal cancers with different KRAS status[J]. BMC Cancer, 2019, 19(1): 1111. DOI: 10.1186/s12885-019-6341-6.
[16]
Cui Y, Liu H, Ren J, et al. Development and validation of a MRI-based radiomics signature for prediction of KRAS mutation in rectal cancer[J]. Eur Radiol, 2020, 30(4): 1948-1958. DOI: 10.1007/s00330-019-06572-3.
[17]
Cui Y, Cui X, Yang X, et al. Diffusion kurtosis imaging-derived histogram metrics for prediction of KRAS mutation in rectal adenocarcinoma: preliminary findings[J]. J Magn Reson Imaging, 2019, 50(3): 930-939. DOI: 10.1002/jmri.26653.
[18]
Beckers RCJ, Lambregts DMJ, Lahaye MJ, et al. Advanced imaging to predict response to chemotherapy in colorectal liver metastases-a systematic review[J]. HPB(Oxford), 2018, 20 (2): 120-127. DOI: 10.1016/j.hpb.2017.10.013.
[19]
Gültekin MA, Türk HM, Beşiroğlu M, et al. Relationship between KRAS mutation and diffusion weighted imaging in colorectal liver metastases, preliminary study[J]. Eur J Radiol, 2020, 125: 108895. DOI: 10.1016/j.ejrad.2020.108895.
[20]
Wu X, Li Y, Chen X, et al. Deep learning features improve the performance of a radiomics signature for predicting KRAS status in patients with colorectal cancer[J]. Acad Radiol, 2020, 27(11): e254-e262. DOI: 10.1016/j.acra.2019.12.007.
[21]
Zhang KK, Xu YS, Gao Y, et al. Advances in application of radiomics in colorectal cancer[J]. Chin J Magn Reson Imaging, 2021, 12(3): 112-115. DOI: 10.12015/issn.1674-8034.2021.03.028.

PREV The value of T1 mapping and ECV in the diagnosis of acute pancreatitis and recurrent acute pancreatitis: a primary study
NEXT Clinical value of MRI-based scoring system in predicting placenta accreta spectrum disorders
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn