Share:
Share this content in WeChat
X
Review
Magnetic resonance research progress in amnestic mild cognitive impairment
LI Xiaoling  CAI Lina  CUI Xuan  PENG Cailiang  MA Cuisong  LIU Shiping  YANG Xu  SUN Xuchen  YUAN Yuan 

Cite this article as: Li XL, Cai LN, Cui X, et al. Magnetic resonance research progress in amnestic mild cognitive impairment[J]. Chin J Magn Reson Imaging, 2021, 12(11): 94-96. DOI:10.12015/issn.1674-8034.2021.11.023.


[Abstract] Alzheimer disease (AD) is a progressive age-related neurodegenerative disease. Mild cognitive impairment (MCI) is a transitional stage between the normal aging process and AD. It is divided into amnestic MCI (aMCI) and non-amnestic MCI. The former is mainly memory impairment, which is considered to be the early stage of AD. The clinical subtypes of aMCI include single-domain (SD) and multi-domain (MD). Different subtypes have different possibilities to progress to AD. At present, the etiology and pathogenesis of AD are unclear, and there is no effective cure. Therefore, early diagnosis, intervention and treatment of aMCI and delay its progression to AD are of great significance. In recent years, magnetic resonance imaging combined with different analysis methods have been applied to the study of aMCI mechanism, which can objectively and indirectly reflect the abnormality of brain structure and functional activity, and provide certain clues for explaining its mechanism. Therefore, this article reviews the progress of aMCI magnetic resonance imaging studies.
[Keywords] structural magnetic resonance imaging;functional magnetic resonance imaging;amnestic mild cognitive impairment;Alzheimer disease

LI Xiaoling1   CAI Lina2   CUI Xuan2   PENG Cailiang1, 2*   MA Cuisong2   LIU Shiping2   YANG Xu2   SUN Xuchen2   YUAN Yuan2  

1 Department of CT and MRI, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China

2 Graduate School of Heilongjiang University of traditional Chinese Medicine, Harbin 150040, China

Peng CL, E-mail: 419585226@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This article is supported by the National Natural Science Foundation of China (No. 81973930, 82074537). Heilongjiang Natural Science Foundation of China (No. LH2020H103, H2016081). Harbin Science and Technology Outstanding Discipline Leader Project (No. 2016RAXYJ096). Research Fund of Heilongjiang University of Traditional Chinese Medicine (No. 2019MS03).
Received  2021-06-29
Accepted  2021-09-08
DOI: 10.12015/issn.1674-8034.2021.11.023
Cite this article as: Li XL, Cai LN, Cui X, et al. Magnetic resonance research progress in amnestic mild cognitive impairment[J]. Chin J Magn Reson Imaging, 2021, 12(11): 94-96. DOI:10.12015/issn.1674-8034.2021.11.023.

[1]
Li WT, Wang Q, Du SZ, et al. Acupuncture for mild cognitive impairment in elderly people: Systematic review and meta-analyses[J]. Medicine (Baltimore), 2020, 99(39): e22365. DOI: 10.1097/MD.0000000000022365.
[2]
He WB, Li MX, Han XM, et al. Acupuncture for Mild Cognitive Impairment and Dementia:An Overview of Systematic Reviews[J]. Front Aging Neurosci, 2021, 13:647629. DOI: 10.3389/fnagi.2021.647629.
[3]
Amieva H, Le Goff M, Millet X, et al. Prodromal Alzheimer's disease: successive emergence of the clinical symptoms[J]. Ann Neurol, 2008, 64(5): 492-8. DOI: 10.1002/ana.21509.
[4]
Qian SN, Yu M. Recent advance in biomarkers as predictors for conversion from mild cognitive impairment to Alzheimer's disease[J]. Chin J Neuromed, 2020, 019(5): 519-524. DOI: 10.3760/cma.j.cn115354-20191225-00775.
[5]
Du YF, LV PY, Ji Y, et al. 2018 Chinese guideline for diagnosis and treatment of dementia and cognitive impairment (V): diagnosis and treatment of mild cognitive impairment[J]. Natl Med J Chin, 2018, 98(17): 1294-1301. DOI: 10.3760/cma.j.issn.0376-2491.2018.17.003.
[6]
Oltra J, Ferrer R, Alegret M, et al. Risk of progression to Alzheimer's disease for diff erent neuropsychological mild cognitive impairment subtypes: a hierarchical meta-analysis of longitudinal studies[J]. Psychol Aging, 2018, 33(7): 1007-1021. DOI: 10.1037/pag0000294.
[7]
Yu Q, Xu XB, Wang XJ. The application value of magnetic resonance in the diagnosis of vascular dementia and Alzheimer's disease[J]. Mod Med Imageol, 2019, 28(11): 2435-2436, 2438. DOI: CNKI:SUN:XDYY.0.2019-11-029.
[8]
Mei Y, Sun XW, Ba MW, et al. New development of clinical symptoms and diagnostic methods of Alzheimer′s disease in different stages[J]. J Mod Med Health, 2017, 33(18): 2745-2748. DOI: 10.3969/j.issn.1009-5519.2017.18.003.
[9]
Lin F, Ren P, Wang XX, et al. Cortical thickness is associated with altered autono mic function in cognitively impaired and non-impaired older adults[J]. J Physiol, 2017, 595(22): 6969-6978. DOI: 10.1113/JP274714.
[10]
Li X, Cao M, Zhang JY, et al. Structural and functional brain changes in the default mode network in subtypes of amnestic mild cognitive impairment[J]. J Geriatr Psychiatry Neurol, 2014, 27(3): 188-98. DOI: 10.1177/0891988714524629.
[11]
Brambati SM, Belleville S, Kergoat MJ, et al. Single-and multiple-domain amnestic mild cognitive impairment: two sides of the same coin?[J]. Dement Geriatr Cogn Disord, 2009, 28: 541-549. DOI: 10.1159/000255240.
[12]
He J, Farias S, Martinez O, et al. Differences in brain volume, hippocampal volume, cerebrovascular risk factors, and apolipoprotein E4 among mild cognitive impairment subtypes[J]. Arch Neurol, 2009, 66(11): 1393. DOI: 10.1001/archneurol.2009.252.
[13]
Zhang H, Sachdev PS, Wen W, et al. Gray matter atrophy patterns of mild cognitive impairment subtypes[J]. J Neurol Sci, 2012, 315(1-2): 26-32. DOI: 10.1016/j.jns.2011.12.011.
[14]
Zhou QH, Wang K, Zhang XM, et al. Differential regional brain spontaneous activity in subgroups of mild cognitive impairment[J]. Front Hum Neurosci, 2020, 14: 2. DOI: 10.3389/fnhum.2020.00002.
[15]
Eero V, Linda K, Dominic H, et al. Modifying the minimum criteria for diagnosing amnestic MCI to improve prediction of brain atrophy and progression to Alzheimer's disease[J]. Brain Imaging Behav, 2020, 14(3): 787-796. DOI: 10.1007/s11682-018-0019-6.
[16]
Andrew JH, Nicholas JT, Freddie M, et al. Anterolateral entorhinal cortex thickness as a new biomarker for early detection of Alzheimer's disease[J]. Alzheimers Dement (Amst), 2020, 25, 12(1): e12068. DOI: 10.1002/dad2.12068.
[17]
Nesteruk M, Nesteruk T, Styczyńska M, et al. Predicting the conversion of mild cognitive impairment to Alzheimer's disease based on the volumetric measurements of the selected brain structures in magnetic resonance imaging[J]. Neurol Neurochir Pol, 2015, 49: 349-353. DOI: 10.1016/j.pjnns.2015.09.003.
[18]
Vasavada MM, Wang J, Eslinger PJ, et al. Olfactory cortex degeneration in Alzheimer's disease and mild cognitive impairment[J]. J Alzheimers Dis, 2015, 45: 947-958. DOI: 10.3233/JAD-141947.
[19]
Yatawara C, Lee D, Ng KP, et al. Mechanisms linking white matter lesions, tract integrity, and depression in Alzheimer disease[J]. Am J Geriatr Psychiatry, 2019, 27(9): 948-959. DOI: 10.1016/j.jagp.2019.04.004.
[20]
Struyfs H, Van Hecke W, Veraart J, et al. Diffusion kurtosis imaging: a possible MRI biomarker for ad diagnosis?[J]. J Alzheimers Dis, 2015, 48(4): 937-48. DOI: 10.3233/JAD-150253.
[21]
Nir TM, Jahanshad N, Villalon-Reina JE, et al. Alzheimer's disease neuroimaging initiative (ADNI). Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging[J]. Neuroimage Clin, 2013, 3: 180-95. DOI: 10.1016/j.nicl.2013.07.006.
[22]
Douaud G, Jbabdi S, Behrens TE, et al. DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease[J]. Neuroimage, 2011, 55(3): 880-90. DOI: 10.1016/j.neuroimage.2010.12.008.
[23]
Alm KH, Bakker A. Relationships between diffusion tensor imaging and cerebrospinal fluid metrics in early stages of the Alzheimer's disease continuum[J]. J Alzheimers Dis, 2019, 70(4): 965-981. DOI: 10.3233/JAD-181210.
[24]
Li H, Liang Y, Chen KW, et al. Different patterns of white matter disruption among amnestic mild cognitive impairment subtypes: relationship with neuropsychological performance[J]. J Alzheimers Dis, 2013, 36: 365-376. DOI: 10.3233/JAD-122023.
[25]
Rose SE, McMahon KL, Janke AL, et al. Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment[J]. J Neurol Neurosurg Psychiatry, 2006, 77: 1122-1128. DOI: 10.1136/jnnp.2005.074336.
[26]
Kantarci K, Petersen RC, Boeve BF, et al. DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment[J]. Neurology, 2005, 64: 902-904. DOI: 10.1212/01.
[27]
Gorges M, Müller HP. Structural brain signature of cognitive decline in Parkinson's disease: DTI-based evidence from the LANDSCAPE study[J]. Ther Adv Neurol Disord, 2019, 12: 1756286419843447. DOI: 10.1177/1756286419843447.
[28]
Luo CM, Li MC, Qin RM, et al. Long longitudinal tract lesion contributes to the progression of Alzheimer's disease[J]. Front Neurol, 2020, 16(11): 503235. DOI: 10.3389/fneur.2020.503235.
[29]
Li HB, Tang XQ, Chen Y, et al. Primary study of automatic segmentation and measurement of brain region volumes applicating in Alzheimer's disease diagnosis[J]. Chin J Magn Reson Imaging, 2021, 12(6): 27-33. DOI: 10.12015/issn.1674-8034.2021.06.006.
[30]
Firbank MJ, Watson R, Mak E, et al. Longitudinal diffusion tensor imaging in dementia with Lewy bodies and Alzheimer's disease[J]. Parkinsonism Relat Disord, 2016, 24: 76-80. DOI: 10.1016/j.parkreldis.2016.01.003.
[31]
Yuan XL, Han YB, Wei Y, et al. Regional homogeneity changes in amnestic mild cognitive impairment patients[J]. Neurosci Lett, 2016, 629: 1-8. DOI: 10.1016/j.neulet.2016.06.047.
[32]
Puttaert D, Coquelet N, Wens V, et al. Alterations in resting-state network dynamics along the Alzheimer's disease continuum[J]. Sci Rep, 2020, 10(1): 21990. DOI: 10.1038/s41598-020-76201-3.
[33]
Bharath S, Joshi H, John JP, et al. A multimodal structural and functional neuroimaging study of amnestic mild cognitive impairment[J]. Am J Geriatr Psychiatry, 2017, 25(2): 158-169. DOI: 10.1016/j.jagp.2016.05.001.
[34]
Putcha D, Ross RS, Cronin-Golomb A, et al. Salience and default mode network coupling predicts cognition in aging and Parkinson's disease[J]. J Int Neuropsychol Soc, 2016, 22(2): 205-15. DOI: 10.1017/S1355617715000892.
[35]
Luo X, Jiaerken Y, Huang PY, et al. Alzheimer's disease neuroimaging initiative (ADNI). Alteration of regional homogeneity and white matter hyperintensities in amnestic mild cognitive impairment subtypes are related to cognition and CSF biomarkers[J]. Brain Imaging Behav, 2018, 12(1): 188-200. DOI: 10.1007/s11682-017-9680-4.
[36]
Cai SP, Chong T, Peng YL, et al. Alzheimer's disease neuroimaging initiative: altered functional brain networks in amnestic mild cognitive impairment: a resting-state fMRI study[J]. Brain Imaging Behav, 2017, 11(3): 619-631. DOI: 10.1007/s11682-016-9539-0.
[37]
Zhen D, Xia W, Yi ZQ, et al. Alterations of brain local functional connectivity in amnestic mild cognitive impairment[J]. Transl Neurodegener, 2018, 7: 26. DOI: 10.1186/s40035-018-0134-8.

PREV Research progress of functional magnetic resonance imaging of resting brain network in supplementary motor area of Parkinson,s disease
NEXT Research progress of brain magnetic resonance imaging in patients with obstructive sleep apnea hypopnea syndrome
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn